# Evaluate the integral displaystyleintfrac{x}{{2}}{left.{d}{x}right.} Question
Integrals Evaluate the integral $$\displaystyle\int\frac{x}{{2}}{\left.{d}{x}\right.}$$ 2021-02-10
There are two properties of integrals that we'll use to evaluate this.
1.Constant multiples can be pulled out of the integral.
$$\displaystyle\int{k} f{{\left({x}\right)}}{\left.{d}{x}\right.}={k}\int f{{\left({x}\right)}}{\left.{d}{x}\right.}$$
2.The integral of $$\displaystyle{x}^{n}$$ is given by
$$\displaystyle\int{x}^{n}{\left.{d}{x}\right.}=\frac{{{x}^{{{n}+{1}}}}}{{{n}+{1}}}+{C}$$
which you can easily show using the Fundamental Theorem of Calculus, if you've gotten to that yet.
Using these two properties, we thus see
$$\displaystyle\int\frac{x}{{2}}{\left.{d}{x}\right.}=\int\frac{1}{{2}}{x}^{1}{\left.{d}{x}\right.}$$
$$\displaystyle=\frac{1}{{2}}\int{x}^{1}{\left.{d}{x}\right.}$$
$$\displaystyle=\frac{1}{{2}}\frac{{x}^{2}}{{2}}+{C}$$
$$\displaystyle=\frac{1}{{4}}{x}^{2}+{C}$$

### Relevant Questions Evaluate the integral $$\displaystyle\int{e}^{{{3}{x}}} \cos{{2}}{x}{\left.{d}{x}\right.}$$ Solve. $$\displaystyle\int\frac{{\sqrt{{x}}}}{{{1}+{\sqrt[{{3}}]{{x}}}}}{\left.{d}{x}\right.}=?$$ Give the correct answer and solve the given equation Evaluate $$\displaystyle\int{x}^{3}{\left({\sqrt[{3}]{{{1}-{x}^{2}}}}\right)}{\left.{d}{x}\right.}$$ Give the correct answer and solve the given equation $$\displaystyle\frac{{\left.{d}{y}\right.}}{{\left.{d}{x}\right.}}=\frac{{{y}^{2}-{1}}}{{{x}^{2}-{1}}},{y}{\left({2}\right)}={2}$$ Give the correct answer and solve the given equation $$\displaystyle{\left({x}-{y}\right)}{\left.{d}{x}\right.}+{\left({3}{x}+{y}\right)}{\left.{d}{y}\right.}={0},\text{when}\ {x}={3},{y}=-{2}$$ You need to prove that question
$$\displaystyle{\int_{{0}}^{{1}}} \sin{{\left(\pi{m}{x}\right)}} \sin{{\left(\pi{n}{x}\right)}}{\left.{d}{x}\right.}={\left\lbrace{\left(\begin{matrix}{0}{m}\ne{n}\\{1}\text{/}{2}{m}={n}\end{matrix}\right)}\right.}$$ Give the correct answer and solve the given equation
$$\displaystyle{\left({x}+{y}\right)}{\left.{d}{x}\right.}+{\left({x}-{y}\right)}{\left.{d}{y}\right.}={0}$$ $$\displaystyle\int\int\int_{{E}}{\left({x}{y}+{z}^{{2}}\right)}{d}{V}$$,
where $$\displaystyle{E}={\left\lbrace{\left({x},{y},{z}\right)}{\mid}{0}\le{x}\le{2},{0}\le{y}\le{1},{0}\le{z}{<}{3}\right\rbrace}$$ Evaluate the triple integral $$\displaystyle\int\int\int_{{E}}{3}{y}{d}{V}$$,where
$$\displaystyle{E}={\left\lbrace{\left({x},{y},{z}\right)}{\mid}{0}\le{x}\le{2},{0}\le{y}\le\sqrt{{{4}-{x}^{{2}}}},{0}\le{z}\le{x}\right\rbrace}$$ Solve. $$\displaystyle\int\frac{{{78}{x}}}{{{25}-{12}{x}+{4}{x}^{2}}}$$