Ask question

# Solve. displaystyleintfrac{{sqrt{{x}}}}{{{1}+{sqrt[{{3}}]{{x}}}}}{left.{d}{x}right.}=? # Solve. displaystyleintfrac{{sqrt{{x}}}}{{{1}+{sqrt[{{3}}]{{x}}}}}{left.{d}{x}right.}=?

Question
Integrals asked 2020-10-25
Solve. $$\displaystyle\int\frac{{\sqrt{{x}}}}{{{1}+{\sqrt[{{3}}]{{x}}}}}{\left.{d}{x}\right.}=?$$

## Answers (1) 2020-10-26
Notice that if $$\displaystyle{u}={x}^{{\frac{1}{{6}}}},{t}{h}{e}{n}\ {u}^{2}={x}^{{\frac{1}{{3}}}}{\quad\text{and}\quad}{u}^{3}={x}^{{\frac{1}{{2}}}}$$.
Also we have that $$\displaystyle{d}{u}=\frac{1}{{{6}{x}^{{\frac{5}{{6}}}}}}{\left.{d}{x}\right.}=\frac{1}{{{6}{u}^{5}}}{\left.{d}{x}\right.}$$.
So that,
$$\displaystyle\int\frac{\sqrt{{2}}}{{{1}+{x}^{{\frac{1}{{3}}}}}}{\left.{d}{x}\right.}=\int{6}{u}^{5}\frac{{u}^{3}}{{{1}+{u}^{2}}}{d}{u}={6}\int\frac{{u}^{8}}{{{1}+{u}^{2}}}$$
From here, we can simply use some polynomial division to simplify the quotient.Notice then that:
$$\displaystyle{\frac{{{u}^{8}}}{{{1}+{u}^{2}}}}={u}^{6}-{u}^{4}+{u}^{2}-{1}+{\frac{{{1}}}{{{u}^{2}+{1}}}}$$
Thus, we have the folowing:
$$\displaystyle{6}\int\frac{{u}^{8}}{{{1}+{u}^{2}}}{d}{u}={6}{\left(\int{u}^{6}-{u}^{4}+{u}^{2}-{1}+\frac{1}{{{u}^{2}+{1}}}\right)}{d}{u}$$
So we have the last result:
$$6(\int u^{6}-u^{4}+u^{2}-1+\frac{1}{u^{2}+1})du = \frac{6u^{7}}{7}-\frac{6u^{5}}{5}+\frac{6u^{3}}{3}-6u+6\arctan u)$$
$$\displaystyle\frac{{{6}{x}^{{\frac{7}{{6}}}}}}{{7}}-\frac{{{6}{x}^{{\frac{5}{{6}}}}}}{{5}}+\frac{{{6}{x}^{{\frac{1}{{2}}}}}}{{3}}-{6}{x}^{{\frac{1}{{6}}}}+{6}{ \arctan{{x}}^{{\frac{1}{{3}}}}}$$

### Relevant Questions asked 2020-11-11
Give the correct answer and solve the given equation Evaluate $$\displaystyle\int{x}^{3}{\left({\sqrt[{3}]{{{1}-{x}^{2}}}}\right)}{\left.{d}{x}\right.}$$ asked 2021-02-09
Evaluate the integral $$\displaystyle\int\frac{x}{{2}}{\left.{d}{x}\right.}$$ asked 2020-11-24
Give the correct answer and solve the given equation $$\displaystyle{\left({x}-{y}\right)}{\left.{d}{x}\right.}+{\left({3}{x}+{y}\right)}{\left.{d}{y}\right.}={0},\text{when}\ {x}={3},{y}=-{2}$$ asked 2020-11-02
Give the correct answer and solve the given equation $$\displaystyle\frac{{\left.{d}{y}\right.}}{{\left.{d}{x}\right.}}=\frac{{{y}^{2}-{1}}}{{{x}^{2}-{1}}},{y}{\left({2}\right)}={2}$$ asked 2021-01-05
Give the correct answer and solve the given equation
$$\displaystyle{\left({x}+{y}\right)}{\left.{d}{x}\right.}+{\left({x}-{y}\right)}{\left.{d}{y}\right.}={0}$$ asked 2021-03-09
Evaluate the integral $$\displaystyle\int{e}^{{{3}{x}}} \cos{{2}}{x}{\left.{d}{x}\right.}$$ asked 2021-01-19
You need to prove that question
$$\displaystyle{\int_{{0}}^{{1}}} \sin{{\left(\pi{m}{x}\right)}} \sin{{\left(\pi{n}{x}\right)}}{\left.{d}{x}\right.}={\left\lbrace{\left(\begin{matrix}{0}{m}\ne{n}\\{1}\text{/}{2}{m}={n}\end{matrix}\right)}\right.}$$ asked 2020-11-01
Give the correct answer and solve the given equation
Let $$\displaystyle{p}{\left({x}\right)}={2}+{x}{\quad\text{and}\quad}{q}{\left({x}\right)}={x}$$. Using the inner product $$\langle\ p,\ q\rangle=\int_{-1}^{1}pqdx$$ find all polynomials $$\displaystyle{r}{\left({x}\right)}={a}+{b}{x}\in{P}{1}{\left({R}\right)}{P}$$
(R) such that {p(x), q(x), r(x)} is an orthogonal set. asked 2020-12-15
Solve. $$\displaystyle\int\frac{{{78}{x}}}{{{25}-{12}{x}+{4}{x}^{2}}}$$ asked 2021-01-30
a) If $$\displaystyle f{{\left({t}\right)}}={t}^{m}{\quad\text{and}\quad} g{{\left({t}\right)}}={t}^{n}$$, where m and n are positive integers. show that $$\displaystyle{f}\ast{g}={t}^{{{m}+{n}+{1}}}{\int_{{0}}^{{1}}}{u}^{m}{\left({1}-{u}\right)}^{n}{d}{u}$$
b) Use the convolution theorem to show that
$$\displaystyle{\int_{{0}}^{{1}}}{u}^{m}{\left({1}-{u}\right)}^{n}{d}{u}=\frac{{{m}!{n}!}}{{{\left({m}+{n}+{1}\right)}!}}$$
c) Extend the result of part b to the case where m and n are positive numbers but not necessarily integers.
...