# Find the derivative of the function. y=frac{8}{3x^4}

Question
Derivatives
Find the derivative of the function.
$$y=\frac{8}{3x^4}$$

2021-02-12
You have to use the quotient rule which states:
$$\frac{d}{dx}[\frac{f(x)}{g(x)}]=(g(x)f'(x)-g'(x)f(x))/(g(x))^{2}$$
So
$$\frac{d}{dx}[\frac{8}{3x^{4}}]=\frac{3x^{4}\times0-12x^{3}\times8}{(3x^{4})^{2}}$$
Simplifying that, we get:
$$\frac{-32}{3x^{5}}$$

### Relevant Questions

Find the fifth derivative of the function $$\displaystyle{y}={\left({x}^{{{3}}}+{2}{x}^{{{2}}}+{3}{x}\right)}{e}^{{{x}}}$$.
Find the derivative of the function. $$\displaystyle{y}={4}{x}{e}^{{-{4}{x}}}+{4}{e}^{{{x}^{{{4}}}}}$$
Use the rules for derivatives to find the derivative of function defined as follows.
$$\displaystyle{q}={\left({e}^{{{2}{p}+{1}}}-{2}\right)}^{{{4}}}$$
Find the derivatives of all of the function.
$$\displaystyle{y}={\frac{{{4}}}{{{3}}}}{x}^{{{3}}}+{\frac{{{7}}}{{{2}}}}{x}^{{{2}}}+{4}{x}+{17}$$
Find the derivative of the function.
$$y=3e^{8t}+3$$
Use the rules for derivatives to find the derivative of each function defined as follows. $$\displaystyle{y}={2}{\tan{{5}}}{x}$$
Find the 3rd derivative of the function y=f(x) given by the equation $$\displaystyle{y}^{{{2}}}={2}{x}$$.
Find the nth order derivative of the function $$\displaystyle{y}={3}^{{{2}{x}+{1}}}$$
$$\displaystyle{f{{\left({x}\right)}}}={3}{x}^{{{4}}}+{7}{x}$$
$$\displaystyle{f{{\left({x}\right)}}}={x}^{{{4}}}-{3}{x}^{{{3}}}+{16}{x}$$