int_{8}^{21}f(x)dx-int_{8}^{11}f(x)dx=int_{a}^{b}f(x)dx

Question
Integrals
asked 2021-02-08
\(\int_{8}^{21}f(x)dx-\int_{8}^{11}f(x)dx=\int_{a}^{b}f(x)dx\)

Answers (1)

2021-02-09
\(\int_{8}^{21}f(x)dx-\int_{8}^{11}f(x)dx=\int_{a}^{b}f(x)dx=\int_{8}^{11}f(x)dx+\int_{8}^{21}f(x)dx=\int_{11}^{21}f(x)dx\)
So a=11, b=21
0

Relevant Questions

asked 2021-01-02
\(\int_{b}^{a}x^{7}dx\)
asked 2020-12-22
\(\displaystyle{\int_{{{b}}}^{{{a}}}}{x}^{{{7}}}{\left.{d}{x}\right.}\)
asked 2021-01-30
a) If \(\displaystyle f{{\left({t}\right)}}={t}^{m}{\quad\text{and}\quad} g{{\left({t}\right)}}={t}^{n}\), where m and n are positive integers. show that \(\displaystyle{f}\ast{g}={t}^{{{m}+{n}+{1}}}{\int_{{0}}^{{1}}}{u}^{m}{\left({1}-{u}\right)}^{n}{d}{u}\)
b) Use the convolution theorem to show that
\(\displaystyle{\int_{{0}}^{{1}}}{u}^{m}{\left({1}-{u}\right)}^{n}{d}{u}=\frac{{{m}!{n}!}}{{{\left({m}+{n}+{1}\right)}!}}\)
c) Extend the result of part b to the case where m and n are positive numbers but not necessarily integers.
asked 2021-02-18
\(\displaystyle{\int_{{{0}}}^{{{2}}}}{\frac{{{1}}}{{{\left({x}-{1}\right)}^{{{2}}}}}}{\left.{d}{x}\right.}\)
asked 2020-11-01
Give the correct answer and solve the given equation
Let \(\displaystyle{p}{\left({x}\right)}={2}+{x}{\quad\text{and}\quad}{q}{\left({x}\right)}={x}\). Using the inner product \(\langle\ p,\ q\rangle=\int_{-1}^{1}pqdx\) find all polynomials \(\displaystyle{r}{\left({x}\right)}={a}+{b}{x}\in{P}{1}{\left({R}\right)}{P}\)
(R) such that {p(x), q(x), r(x)} is an orthogonal set.
asked 2020-12-14
Evaluate the following definite integrals.
\(\int_{1/8}^1\frac{dx}{x\sqrt{1+x^{2/3}}}\)
asked 2021-01-19
You need to prove that question
\(\displaystyle{\int_{{0}}^{{1}}} \sin{{\left(\pi{m}{x}\right)}} \sin{{\left(\pi{n}{x}\right)}}{\left.{d}{x}\right.}={\left\lbrace{\left(\begin{matrix}{0}{m}\ne{n}\\{1}\text{/}{2}{m}={n}\end{matrix}\right)}\right.}\)
asked 2020-11-22
Evaluate the integral \(\int \frac{1}{1+\frac{x}{2}^2}dx\)
asked 2021-02-02
Evaluate the integral \(\displaystyle\int{\frac{{{1}}}{{{1}+{\frac{{{x}}}{{{2}}}}^{{2}}}}}{\left.{d}{x}\right.}\)
asked 2020-10-20
Evaluate the integral. \(\displaystyle\int{x}\sqrt{{{5}{x}-{1}}}{\left.{d}{x}\right.}\)
...