# Evaluate the integral int frac{1}{1+frac{x}{2}^2}dx Question
Integrals Evaluate the integral $$\int \frac{1}{1+\frac{x}{2}^2}dx$$ 2020-11-23
The first step here will be a substitution to simplify that denominator.
$$u=1+\frac{x}{2}$$
$$\therefore du=\frac{x}{2}dx \rightarrow 2du=dx$$
Substituting these in, we get
$$\int \frac{1}{u^{2}}\times 2du=2\int u^{-2}du$$
Now we just use the power rule for integrals.
$$=2[\frac{u^{-1}}{1}]+C=-\frac{2}{u}+c$$
And finally, we substitute back in for xx and simplify
$$=-\frac{2}{1+\frac{x}{2}+C}=-\frac{4}{2+x}+c$$

### Relevant Questions Evaluate the integral $$\displaystyle\int{\frac{{{1}}}{{{1}+{\frac{{{x}}}{{{2}}}}^{{2}}}}}{\left.{d}{x}\right.}$$ Evaluate the integral. $$\displaystyle\int{x}\sqrt{{{5}{x}-{1}}}{\left.{d}{x}\right.}$$ Evaluate the integral:
$$\displaystyle\int\int\int_{{E}}{\left({x}{y}+{z}^{{2}}\right)}{d}{V}$$,
where $$\displaystyle{E}={\left\lbrace{\left({x},{y},{z}\right)}{\mid}{0}\le{x}\le{2},{0}\le{y}\le{1},{0}\le{z}{<}{3}\right\rbrace}$$ Evaluate the integral ∫(2/3sqrtx)dx The integral: $$\displaystyle{\frac{{{\left.{d}{x}\right.}}}{{{\left({4}{x}^{{2}}-{24}{x}+{27}\right)}^{{\frac{{{3}}}{{{2}}}}}}}}$$ $$\displaystyle{\int_{{{0}}}^{{{2}}}}{\frac{{{1}}}{{{\left({x}-{1}\right)}^{{{2}}}}}}{\left.{d}{x}\right.}$$ Evaluate the surface integral
$$\displaystyle\int_{{S}}{F}\cdot{d}{S}$$
for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation.
F(x,y,z)=xi+2yj+3zk
S is the cube with vertices $$\displaystyle{\left(\pm{1},\pm{1},\pm{1}\right)}$$ Evaluate the triple integral $$\displaystyle\int\int\int_{{E}}{3}{y}{d}{V}$$,where
$$\displaystyle{E}={\left\lbrace{\left({x},{y},{z}\right)}{\mid}{0}\le{x}\le{2},{0}\le{y}\le\sqrt{{{4}-{x}^{{2}}}},{0}\le{z}\le{x}\right\rbrace}$$ Evaluate the integral $$\displaystyle\int\frac{x}{{2}}{\left.{d}{x}\right.}$$ Evaluate the integral $$\displaystyle\int{e}^{{{3}{x}}} \cos{{2}}{x}{\left.{d}{x}\right.}$$