# Find f'(a). f(t)= frac{3t+3}{t+2}

Question
Functions
Find f'(a).
$$f(t)= \frac{3t+3}{t+2}$$

2021-02-26
The easiest approach will be to use the quotient rule which says that the derivative of the function f(x)=\frac{g(x)}{h(x)} at any point where h(x) does not equal 00 is
$$f′(x)=(g′(x)h(x)−g(x)h′(x))/[h(x)]2$$
In this case, $$g(t)=3t+3$$ \ and \ $$h(t)=t+2$$. The derivatives of these functions are $$g′(t)=3$$ and $$h′(t)=1$$ respectively. So substituting them in we get
$$f′(a)=\frac{3(a+2)−(3a+3)(1)}{a+2^{2}}=\frac{3}{a+2^{2}}$$

### Relevant Questions

Question 1
The function $$N(t)=15t\sqrt{t^{2}+1}+2000$$ denotes the number of members of a club t months after the club's opening. You can use the following
$$N'(t)=\frac{30t^{2}+15}{\sqrt {t^{2}+1}}$$ / and/or $$\int N(t)dt = 2000t+5(t^{2}+1)^{\frac{3}{2})}+ C$$
1.1 How many members were in the club after 12 months?
Question 1
The function $$\displaystyle{N}{\left({t}\right)}={15}{t}\sqrt{{{t}^{{{2}}}+{1}}}+{2000}$$ denotes the number of members of a club t months after the club's opening. You can use the following
$$\displaystyle{N}'{\left({t}\right)}={\frac{{{30}{t}^{{{2}}}+{15}}}{{\sqrt{{{t}^{{{2}}}+{1}}}}}}$$ / and/or $$\displaystyle\int{N}{\left({t}\right)}{\left.{d}{t}\right.}={2000}{t}+{5}{\left({t}^{{{2}}}+{1}\right)}^{{{\frac{{{3}}}{{{2}}}}}}\rbrace+{C}$$
1.1 How many members were in the club after 12 months?
Let $$P(t)=100+20 \cos⁡ 6t,0\leq t\leq \frac{\pi}{2}$$. Find the maximum and minimum values for P, if any.
Let $$\displaystyle{P}{\left({t}\right)}={100}+{20}{\cos{ asked 2021-02-13 What values(s) of the constant b make \(f(x)=x^{3}−bx$$ for $$0\leq x\leq 2$$ have:
a.) an absolute min at x=1? Explain.
b.) an absolute max at x=2? Explain.
Write a polynomial function f of least degree that has rational coefficients, a leading coefficient of 1, and the given zeros. Write the polynomial in standard form. -2, 1, 3
$$\displaystyle\lim$$ of $$\displaystyle{f{{\left({x},{y}\right)}}}={\frac{{{\left({x}^{{{4}}}+{4}{y}^{{{2}}}\right)}}}{{{\left({x}^{{{2}}}+{2}{y}^{{{2}}}\right)}}}}$$ at (0,0)
​If $$f(x)= \frac{3}{4x^{3}}+2x−1$$ then the value of $$(f−1)′(x)(f^{−1})′(x)$$ when x=9
$$(a)\frac{1}{7}$$
$$(b)\frac{1}{9}$$
$$(c)\frac{1}{11}$$
$$(d)\frac{1}{13}$$
​If $$\displaystyle{f{{\left({x}\right)}}}={\frac{{{3}}}{{{4}{x}^{{{3}}}}}}+{2}{x}−{1}$$ then the value of $$\displaystyle{\left({f}−{1}\right)}′{\left({x}\right)}{\left({f}^{{−{1}}}\right)}′{\left({x}\right)}$$ when x=9
$$\displaystyle{\left({a}\right)}{\frac{{{1}}}{{{7}}}}$$
$$\displaystyle{\left({b}\right)}{\frac{{{1}}}{{{9}}}}$$
$$\displaystyle{\left({c}\right)}{\frac{{{1}}}{{{11}}}}$$
$$\displaystyle{\left({d}\right)}{\frac{{{1}}}{{{13}}}}$$
Lesson 3−23 - 23−2
Some Attributes of Polynomial Functions
$$\displaystyle{a}.{f{{\left({x}\right)}}}={5}{x}−{x}{3}+{3}{x}{5}−{2}{f{{\left({x}\right)}}}={5}{x}-{x}^{{{3}}}+{3}{x}^{{{5}}}-{2}{f{{\left({x}\right)}}}={5}{x}−{x}{3}+{3}{x}{5}−{2}$$
$$\displaystyle{b}.{f{{\left({x}\right)}}}=−{22}{x}{3}−{8}{x}{4}−{2}{x}+{7}{f{{\left({x}\right)}}}=-{\frac{{{2}}}{{{2}}}}{x}^{{{3}}}-{8}{x}^{{{4}}}-{2}{x}+{7}{f{{\left({x}\right)}}}=−{22}​{x}{3}−{8}{x}{4}−{2}{x}+{7}$$
...