\(a.x=\frac{1}{3}\)

\(b.x=16\)

\(c.x=5,x=-5\)

\(d.x>5\)

\(b.x=16\)

\(c.x=5,x=-5\)

\(d.x>5\)

Question

asked 2021-02-02

Solve the following equations and inequalities for x. Check your solution(s), if possible
\(\displaystyle{a}.{\frac{{{3}}}{{{x}}}}={9}\)

\(\displaystyle{b}.\sqrt{{x}}={4}\)

\(\displaystyle{c}.{x}^{{{2}}}={25}\)

\(\displaystyle{d}.{2}{\left({x}−{3}\right)}{>}{4}\)

\(\displaystyle{b}.\sqrt{{x}}={4}\)

\(\displaystyle{c}.{x}^{{{2}}}={25}\)

\(\displaystyle{d}.{2}{\left({x}−{3}\right)}{>}{4}\)

asked 2021-02-08

Solve the equations and inequalities below. Check your solution(s), if possible.
\(a.300x-1500=2400\)

\(b.(3/2)^{x}=(5/6)^{x}+2\)

\(c.x^{2}-25\leq 0\)

\(d.|3x-2|>4\)

\(b.(3/2)^{x}=(5/6)^{x}+2\)

\(c.x^{2}-25\leq 0\)

\(d.|3x-2|>4\)

asked 2021-02-05

Solve the equations and inequalities below. Check your solution(s), if possible.
\(\displaystyle{a}{.300}{x}-{1500}={2400}\)

\(\displaystyle{b}.{\left(\frac{{3}}{{2}}\right)}^{{{x}}}={\left(\frac{{5}}{{6}}\right)}^{{{x}}}+{2}\)

\(\displaystyle{c}.{x}^{{{2}}}-{25}\leq{0}\)

\(\displaystyle{d}.{\left|{3}{x}-{2}\right|}{>}{4}\)

\(\displaystyle{b}.{\left(\frac{{3}}{{2}}\right)}^{{{x}}}={\left(\frac{{5}}{{6}}\right)}^{{{x}}}+{2}\)

\(\displaystyle{c}.{x}^{{{2}}}-{25}\leq{0}\)

\(\displaystyle{d}.{\left|{3}{x}-{2}\right|}{>}{4}\)

asked 2020-11-22

Solve the equations and inequalities below, if possible.
\(\displaystyle{a}.\sqrt{{{x}−{1}}}+{13}={13}\)

\(\displaystyle{b}.{6}{\left|{x}\right|}{>}{18}\)

\(\displaystyle{c}.{\left|{3}{x}-{2}\right|}\le{2}\)

\(\displaystyle{d}.{\frac{{{4}}}{{{5}}}}-{\frac{{{2}{x}}}{{{3}}}}={\frac{{{3}}}{{{10}}}}\)

\(\displaystyle{e}.{\left({4}{x}-{2}\right)}^{{{2}}}\le{100}\)

\(\displaystyle{f}.{\left({x}-{1}\right)}^{{{3}}}={8}\)

\(\displaystyle{b}.{6}{\left|{x}\right|}{>}{18}\)

\(\displaystyle{c}.{\left|{3}{x}-{2}\right|}\le{2}\)

\(\displaystyle{d}.{\frac{{{4}}}{{{5}}}}-{\frac{{{2}{x}}}{{{3}}}}={\frac{{{3}}}{{{10}}}}\)

\(\displaystyle{e}.{\left({4}{x}-{2}\right)}^{{{2}}}\le{100}\)

\(\displaystyle{f}.{\left({x}-{1}\right)}^{{{3}}}={8}\)

asked 2020-10-20

Solve the equations and inequalities below, if possible. Check your solutions.
\(a.(4x−2)^{2}≤100\)

\(b.(x−1)^{2}=9\)

\(c. x^{2}+x−20<0\)

\(d.2x^{2}−6x=−5\)

\(b.(x−1)^{2}=9\)

\(c. x^{2}+x−20<0\)

\(d.2x^{2}−6x=−5\)

asked 2021-02-03

Solve the equations and inequalities below, if possible. Check your solutions.
\(\displaystyle{a}.{\left({4}{x}−{2}\right)}^{{{2}}}≤{100}\)

\(\displaystyle{b}.{\left({x}−{1}\right)}^{{{2}}}={9}\)

\(\displaystyle{c}.{x}^{{{2}}}+{x}−{20}{<}{0}\)

\(\displaystyle{d}{.2}{x}^{{{2}}}−{6}{x}=−{5}\)

\(\displaystyle{b}.{\left({x}−{1}\right)}^{{{2}}}={9}\)

\(\displaystyle{c}.{x}^{{{2}}}+{x}−{20}{<}{0}\)

\(\displaystyle{d}{.2}{x}^{{{2}}}−{6}{x}=−{5}\)

asked 2021-03-11

Solve the equations and inequalities below. Write your solutions in exact form.
\(a. \frac{3}{4}-\frac{x}{3}=\frac{7x}{4}\)

\(b. (b−4)2<12\)

\(c. ∣3+x∣−9\leq21\)

\(d. 5n^{2}−11n+2=0\)

\(b. (b−4)2<12\)

\(c. ∣3+x∣−9\leq21\)

\(d. 5n^{2}−11n+2=0\)

asked 2020-11-09

Solve the equations and inequalities. Write the answers to the inequalities in interval notation if possible.
(A) \(|7x+4| + 11 = 2\)

(B) \(|7x + 4| + 11 < 2\)

(C) \(|7x + 4| + 11 > 2\)

(B) \(|7x + 4| + 11 < 2\)

(C) \(|7x + 4| + 11 > 2\)

asked 2021-02-25

Solve the equations and inequalities. Write the answers to the inequalities in interval notation if possible.
(A) \(\displaystyle{\left|{7}{x}+{4}\right|}+{11}={2}\)

(B) \(\displaystyle{\left|{7}{x}+{4}\right|}+{11}{<}{2}\)

(C) \(\displaystyle{\left|{7}{x}+{4}\right|}+{11}{>}{2}\)

(B) \(\displaystyle{\left|{7}{x}+{4}\right|}+{11}{<}{2}\)

(C) \(\displaystyle{\left|{7}{x}+{4}\right|}+{11}{>}{2}\)

asked 2020-10-25

Solve the equations and inequalities:
\(\frac{2^{x}}{3} =\frac{5^{x}}{4}\)