# Find the sum of the infinite geometric series: 3+2+frac{4}{3}+frac{8}{9}+...

Question
Series
Find the sum of the infinite geometric series:
$$3+2+\frac{4}{3}+\frac{8}{9}+...$$

2021-02-10
Given: $$S=3+2+\frac{4}{3}+\frac{8}{9}+...$$
We know that sum(S) of infinite geometric series is given by
$$S=\frac{a}{1-r}$$
Where a is first term and r is common ratio
Here,
$$a=3,r=\frac{2}{3}$$
So, by using equation(1) sum(S) of infinite geometric series will be
$$S=\frac{3}{1-\frac{2}{3}}$$
$$S=\frac{3}{(\frac{3-2}{3})}$$
$$S=\frac{3}{(\frac{1}{3})}$$
$$=3(3)$$
$$=9$$
Hence, sum of given infinite geometric series is 9.

### Relevant Questions

Find the sum of the infinite geometric series.
$$1+\frac14+\frac{1}{16}+\frac{1}{64}+...$$
Use the formula for the sum of a geometric series to find the sum, or state that the series diverges.
$$\displaystyle{\frac{{{25}}}{{{9}}}}+{\frac{{{5}}}{{{3}}}}+{1}+{\frac{{{3}}}{{{5}}}}+{\frac{{{9}}}{{{25}}}}+{\frac{{{27}}}{{{125}}}}+\ldots$$
Use the formula for the sum of a geometric series to find the sum, or state that the series diverges.
$$\frac{7}{8}-\frac{49}{64}+\frac{343}{512}-\frac{2401}{4096}+...$$
Find a formula for the general term anan (not the partial sum) of the infinite series. Assume the infinite series begins at n=1.
$$\frac{2}{1^2+1}+\frac{1}{2^2+1}+\frac{2}{3^2+1}+\frac{1}{4^2+1}+...$$
Find the sum of the followinf series. Round to the nearest hundredth if necessary.
$$\displaystyle{6}+{12}+{24}+\ldots+{6144}$$
Sum of a finite geometric series:
$$\displaystyle{S}_{{n}}={\frac{{{a}_{{1}}-{a}_{{1}}{r}^{{n}}}}{{{1}-{r}}}}$$
Find a formula for the nth partial sum of each series and use it to find the seriesâ€™ sum if the series converges.
$$\frac{9}{100}+\frac{9}{100^2}+\frac{9}{100^3}+...+\frac{9}{100^n}+...$$
Use the Geometric Series Test to help you find a power series representation of $$f(x)=\frac{x}{(2+x^3)}$$ centered at 0. Find the interval and radius of convergence.
a. $$1+\frac32+\frac94+...+\frac{81}{16}$$
$$\sum_{n=0}^\infty\frac{3(-2)^n-5^n}{8^n}$$
Evaluating an infinite series $$\displaystyle{\sum_{{{k}={1}}}^{\infty}}{\left({\frac{{{4}}}{{{3}^{{k}}}}}-{\frac{{{4}}}{{{3}^{{{k}+{1}}}}}}\right)}$$ two ways.