Write the inverse variation equation:
\(\displaystyle{y}={\frac{{{k}}}{{\sqrt{{x}}}}}\)

Solve for k, the constant of variation, using y=6 when x=100: \(\displaystyle{6}={\frac{{{k}}}{{\sqrt{{100}}}}}\)

\(\displaystyle{6}={\frac{{{k}}}{{{10}}}}\)

\(\displaystyle{60}={k}\)

The equation will be: \(\displaystyle{y}={\frac{{{60}}}{{\sqrt{{x}}}}}\)

When x=144,ZSK

\(\displaystyle{y}={\frac{{{60}}}{{\sqrt{{144}}}}}\)

\(\displaystyle{y}={\frac{{{60}}}{{{12}}}}\)

\(\displaystyle{y}={5}\)

Solve for k, the constant of variation, using y=6 when x=100: \(\displaystyle{6}={\frac{{{k}}}{{\sqrt{{100}}}}}\)

\(\displaystyle{6}={\frac{{{k}}}{{{10}}}}\)

\(\displaystyle{60}={k}\)

The equation will be: \(\displaystyle{y}={\frac{{{60}}}{{\sqrt{{x}}}}}\)

When x=144,ZSK

\(\displaystyle{y}={\frac{{{60}}}{{\sqrt{{144}}}}}\)

\(\displaystyle{y}={\frac{{{60}}}{{{12}}}}\)

\(\displaystyle{y}={5}\)