Given that, y^{sinx} = x^{cos^{2}x}, find:frac{dx}{dy}

Question
Differential equations
asked 2020-12-01
Given that, \(\displaystyle{y}^{{{\sin{{x}}}}}={x}^{{{{\cos}^{{{2}}}{x}}}},{f}\in{d}:{\frac{{{\left.{d}{x}\right.}}}{{{\left.{d}{y}\right.}}}}\)

Answers (1)

2020-12-02
Use implicit differentiation
Need to know that: \(\displaystyle{\left(\frac{\partial}{\partial}{x}\right)}{y}={\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={y}′\)
\(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}{\left({3}{y}+{2}{x}\times{\ln{{\left({y}\right)}}}={y}^{{{4}}}+{x}\right.}\) (expand by chain rule/product rule)
PSK3y'+2\times\ln(y)+(\frac{2x}{y})\times y'=4y^{3}y'+1SK
PSK3y'+\frac{2xy'}{y}-4y^{3}y'=1-\ln y^{2}SK (collect like terms, logarithm power law)
PSKyy'3+\frac{2x}{y}-4y^{3}=1-\ln y^{2}SK (factor)
\(\displaystyle{y}'{\left(\frac{{{3}{y}+{2}{x}-{4}{y}^{{4}}}}{{y}}\right)}={1}-{{\ln{{\left({y}\right)}}}^{{2}}}\) (common divisor for the fraction)
\(\displaystyle{y}'={\frac{{{y}-{y}{\ln{{y}}}^{{{2}}}}}{{{3}{y}+{2}{x}-{4}{y}^{{{4}}}}}}\) Answer
(Try symbolab for computational questions like this)
0

Relevant Questions

asked 2021-02-10
\(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={\frac{{{x}{y}+{3}{x}-{y}-{3}}}{{{x}{y}-{2}{x}+{4}{y}-{8}}}}\)
Solve it using variable separation
asked 2021-01-10
The problem question is:
\(\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}}={a}{y}+{b}{y}^{{2}}\)
we have to sketch the graph f(y) versus y, determine the critical points, and classify each one as asymptotically stable or unstable.Thing is, how do you get the critical points?
asked 2020-10-26
Find the differential dy for the given values of x and dx. \(y=\frac{e^x}{10},x=0,dx=0.1\)
asked 2021-02-08
Q. 2# \((x+1)\frac{dy}{dx}=x(y^{2}+1)\)
asked 2020-12-25
Q. 2# \(\displaystyle{\left({x}+{1}\right)}{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={x}{\left({y}^{{{2}}}+{1}\right)}\)
asked 2021-01-02
Find dw/dt using the appropriate Chain Rule. Evaluate \(\frac{dw}{dt}\) at the given value of t. Function: \(w=x\sin y,\ x=e^t,\ y=\pi-t\) Value: t = 0
asked 2021-01-08
solve the initial value problem: \(\displaystyle{\left({\tan{{\left({y}\right)}}}-{2}\right)}{\left.{d}{x}\right.}+{\left({x}{{\sec}^{{2}}{\left({y}\right)}}+\frac{{1}}{{y}}\right)}{\left.{d}{y}\right.}={0}\), y(0)=1
asked 2021-02-26
Make and solve the given equation \(x\ dx\ +\ y\ dy=a^{2}\frac{x\ dy\ -\ y\ dx}{x^{2}\ +\ y^{2}}\)
asked 2021-02-09
\(x^{2} +y^{2} =25\)
What is dydx dx/dy?
asked 2021-01-16
find general solution in semi homogenous method of \(\displaystyle\frac{{\left.{d}{y}\right.}}{{\left.{d}{x}\right.}}={x}-{y}+\frac{{1}}{{x}}+{y}-{1}\)
...