# Evaluate the limit. lim_{x rightarrow 3}frac{x^{3}-27}{x^{2}-9}

Question
Evaluate the limit.
$$\displaystyle\lim_{{{x}\rightarrow{3}}}{\frac{{{x}^{{{3}}}-{27}}}{{{x}^{{{2}}}-{9}}}}$$ZSK

2021-01-29
For these sorts of problems, you always need to cancel something from the numerator and denominator before the limit can be evaluated. In this case, notice that
$$\displaystyle{x}^{{{2}}}−{9}={\left({x}−{3}\right)}{\left({x}+{3}\right)}{\quad\text{and}\quad}{x}^{{{3}}}−{27}={\left({x}−{3}\right)}{\left({x}^{{{2}}}+{3}{x}+{9}\right)}$$
So the common factor that can be cancelled is x−3.
$$\displaystyle\lim_{{{x}\rightarrow{3}}}{\frac{{{x}^{{{3}}}-{27}}}{{{x}^{{{2}}}-{9}}}}=\lim_{{{x}\rightarrow{3}}}{\frac{{{x}^{{{2}}}+{3}{x}+{9}}}{{{x}+{3}}}}$$
And now at this point, we can use the fact that this function is continuous at the point x=3 to substitute in 3.
$$\displaystyle\lim_{{{x}\rightarrow{3}}}{\frac{{{x}^{{{2}}}+{3}{x}+{9}}}{{{x}+{3}}}}={\frac{{{3}^{{{2}}}+{9}+{9}}}{{{3}+{3}}}}={\frac{{{9}}}{{{2}}}}$$

### Relevant Questions

Evaluate the limit.
$$\lim_{x \rightarrow 3}\frac{x^{3}-27}{x^{2}-9}$$\)
Evaluate the limit.
$$\lim_{x \rightarrow \infty} \frac{7(x^{9}-4x^{5}+2x-13}{-3x^{9}+x^{8}-5x^{2}+2x}$$
Evaluate the limit.
PSK\lim_{x \rightarrow \infty} \frac{7(x^{9}-4x^{5}+2x-13}{-3x^{9}+x^{8}-5x^{2}+2x} ZSK
$$\displaystyle{\left({x}-{y}\right)}^{{{3}}}-{\left({27}-{y}\right)}^{{{3}}}$$
Evaluate the following derivatives.
$$\displaystyle{\frac{{{d}}}{{{\left.{d}{x}\right.}}}}{\int_{{{3}}}^{{{e}^{{{x}}}}}}{{\cos{{t}}}^{{{2}}}{\left.{d}{t}\right.}}$$
$$\lim_{(x,y)\rightarrow(4,5)}\frac{\sqrt{x+y}-3}{x+y-9}$$
Solve the equations and inequalities. Write the solution sets to the inequalities in interval notation. $$\displaystyle{9}^{{{2}{m}-{3}}}={27}^{{{m}+{1}}}$$
A quadratic function is given. $$\displaystyle{f{{\left({x}\right)}}}={x}^{{{2}}}+{2}{x}−{5}$$ (a) Express the quadratic function in standard form.
$$\lim_{(x,y)\rightarrow(3,3)}(\frac{x-y}{\sqrt x-\sqrt y})$$
A parabola has equation $$\displaystyle{y}={4}{x}²+{x}+{c}$$. One x-intercept is -3. What is the value of c?