# Given r′(t)=⟨sec2t,−sint⟩, find the arc length of the curve r(t) on the interval [−π/3].

Question
Given $$\displaystyle{r}′{\left({t}\right)}=⟨{\sec{{2}}}{t},−{\sin{{t}}}⟩$$, find the arc length of the curve r(t) on the interval $$\displaystyle{\left[− ## Answers (1) 2021-03-10 Let \(\displaystyle{y}={f{{\left({x}\right)}}},{a}\leq{x}\leq{b}$$ be the given curve. The arc length LL of such curve is given by the definite integral
$$\displaystyle={\int_{{{a}}}^{{{b}}}}\sqrt{{{1}+{\left[\int'{\left({x}\right)}\right]}^{{{2}}}}}{\left.{d}{x}\right.}$$
Let $$\displaystyle{x}={g{{\left({t}\right)}}},{y}={h}{\left({t}\right)}$$ where c≤x≤d be the parametric equations of the curve y=f(x).
Then the arc length of the curve is given by
$$\displaystyle{L}={\int_{{{c}}}^{{{d}}}}\sqrt{{{\left({\frac{{{\left.{d}{x}\right.}}}{{{\left.{d}{t}\right.}}}}\right)}^{{2}}+{\left({\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{t}\right.}}}}\right)}^{{2}}}}{\left.{d}{t}\right.}$$
Here $$\displaystyle{x}{\left({t}\right)}={\sec{{2}}}{t},{y}{\left({t}\right)}=−{\sin{{t}}}$$ where $$\displaystyle− ### Relevant Questions asked 2020-12-30 Given \(r′(t)=⟨\sec2t,−\sint⟩$$, find the arc length of the curve r(t) on the interval $$[−π/3].$$
Find the exact length of the parametric curve $$\displaystyle{0}{<}{t}{<}\pi$$
$$\displaystyle{x}={\cos{\cdot}}{e}^{{t}}$$
$$\displaystyle{y}={\sin{\cdot}}{e}^{{t}}$$
Find, correct to four decimal places, the length of the curve of intersection of the cylinder $$\displaystyle{4}{x}^{{2}}+{y}^{{2}}={4}$$ and the plane x + y + z = 5.
Convert the point $$(-\sqrt3, -\sqrt 3)$$ in rectangular coordinates to polar coordinates that satisfies
$$r > 0, -\pi < \theta \leq \pi$$
The rectangular coordinates of a point are given $$(-5, 2)$$ . Use a graphing utility in radian mode to find polar coordinates of each point to three decimal places.
Polar coordinates of a point are given $$(4, 90^\circ)$$. Find the rectangular coordinates of each point.
Consider the helix represented investigation by the vector-valued function $$r(t)=\ <\ 2\ \cos\ t,\ 2\ \sin\ t,\ t\ >$$. Solve for t in the relationship derived in part (a), and substitute the result into the original set of parametric equations. This yields a parametrization of the curve in terms of the arc length parameter s.