Solve the equations and inequalities below, if possible. Check your solutions. a.(4x−2)^{2}≤100 b.(x−1)^{2}=9 c. x^{2}+x−20<0 d.2x^{2}−6x=−5

Question
Equations and inequalities
Solve the equations and inequalities below, if possible. Check your solutions. $$\displaystyle{a}.{\left({4}{x}−{2}\right)}^{{{2}}}≤{100}$$
$$\displaystyle{b}.{\left({x}−{1}\right)}^{{{2}}}={9}$$
$$\displaystyle{c}.{x}^{{{2}}}+{x}−{20}{<}{0}$$</span>
$$\displaystyle{d}{.2}{x}^{{{2}}}−{6}{x}=−{5}$$

2021-02-04
$$\displaystyle{a}.-{2}\leq{\left\lbrace{x}\right\rbrace}\leq{\left\lbrace{3}\right\rbrace}$$
$$\displaystyle{b}.{x}={4}{\quad\text{and}\quad}{x}=-{2}$$
$$\displaystyle{c}.-{5}{<}{x}{<}{4}$$</span>
$$\displaystyle{d}.{x}={1.5}\pm{0},{5}{i}$$

Relevant Questions

Solve the equations and inequalities below, if possible. $$\displaystyle{a}.\sqrt{{{x}−{1}}}+{13}={13}$$
$$\displaystyle{b}.{6}{\left|{x}\right|}{>}{18}$$
$$\displaystyle{c}.{\left|{3}{x}-{2}\right|}\le{2}$$
$$\displaystyle{d}.{\frac{{{4}}}{{{5}}}}-{\frac{{{2}{x}}}{{{3}}}}={\frac{{{3}}}{{{10}}}}$$
$$\displaystyle{e}.{\left({4}{x}-{2}\right)}^{{{2}}}\le{100}$$
$$\displaystyle{f}.{\left({x}-{1}\right)}^{{{3}}}={8}$$
Solve the equations and inequalities below. Check your solution(s), if possible. $$a.300x-1500=2400$$
$$b.(3/2)^{x}=(5/6)^{x}+2$$
$$c.x^{2}-25\leq 0$$
$$d.|3x-2|>4$$
Solve the following equations and inequalities for x. Check your solution(s), if possible $$a. \frac{3}{x}=9$$
$$b. \sqrt x=4$$
$$c. x^{2}=25$$
$$d. 2(x−3)>4$$
Solve the equations and inequalities.
$$\displaystyle{a}^{{2}}+{12}+{36}={0}$$
Solve the equations and inequalities. Write the solution sets to the inequalities in interval notation. $$\displaystyle{9}^{{{2}{m}-{3}}}={27}^{{{m}+{1}}}$$
Solve the equations and inequalities below. Write your solutions in exact form. $$a. \frac{3}{4}-\frac{x}{3}=\frac{7x}{4}$$
$$b. (b−4)2<12$$
$$c. ∣3+x∣−9\leq21$$
$$d. 5n^{2}−11n+2=0$$
Solve the equations an inequalities.
$$\displaystyle{a}^{{2}}+{12}{a}+{36}\leq{0}$$

A system of linear equations is given below.
$$2x+4y=10$$
$$\displaystyle-{\frac{{{1}}}{{{2}}}}{x}+{3}={y}$$
Find the solution to the system of equations.
A. (0, -3)
B. (-6, 0)
C. There are infinite solutions.
D. There are no solutions.

Solve the equations and inequalities. Find the solution sets to the inequalities in interval notation. $$\displaystyle\sqrt{{{t}+{3}}}+{4}={t}+{1}$$