# Sofia's 4th grade class has a spelling list organized by subject. The spelling list includes 170 words about history, 75 words about science, 60 words about math, and 55 words about geography. Each week, Sofia's teacher tests her on 15 words from the list. Sofia's class has already had 7 weeks of spelling tests. How many more words will Sofia be tested on before the end of the year?

Question
Math Word Problem

Sofia's 4th grade class has a spelling list organized by subject. The spelling list includes 170 words about history, 75 words about science, 60 words about math, and 55 words about geography. Each week, Sofia's teacher tests her on 15 words from the list. Sofia's class has already had 7 weeks of spelling tests. How many more words will Sofia be tested on before the end of the year?

2021-02-03
Solution:
Total words are 170 + 75+60+55=360.
Each week, Sofia is test with 15 words from the list.
Total number of weeks it will take to finish the test is 24.
Average number of weeks in a year is 25 approximately.
Seven weeks are already over, that means $$\displaystyle{15}\times{7}={105}$$ words are covered from the list. Conclusion:
Remaining words are 360—105=255.
These words can be covered in a group of 15 in a week, so $$\displaystyle\frac{255}{{15}}={17}$$ are the number of weeks.
Therefore, the number of words that Sofia will be tested on before the end of the year is 255.

### Relevant Questions

We will now add support for register-memory ALU operations to the classic five-stage RISC pipeline. To offset this increase in complexity, all memory addressing will be restricted to register indirect (i.e., all addresses are simply a value held in a register; no offset or displacement may be added to the register value). For example, the register-memory instruction add x4, x5, (x1) means add the contents of register x5 to the contents of the memory location with address equal to the value in register x1 and put the sum in register x4. Register-register ALU operations are unchanged. The following items apply to the integer RISC pipeline:
a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.
b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.
c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.
d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.
Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.
4.7 A multiprocessor with eight processors has 20attached tape drives. There is a large number of jobs submitted tothe system that each require a maximum of four tape drives tocomplete execution. Assume that each job starts running with onlythree tape drives for a long period before requiring the fourthtape drive for a short period toward the end of its operation. Alsoassume an endless supply of such jobs.
a) Assume the scheduler in the OS will not start a job unlessthere are four tape drives available. When a job is started, fourdrives are assigned immediately and are not released until the jobfinishes. What is the maximum number of jobs that can be inprogress at once? What is the maximum and minimum number of tapedrives that may be left idle as a result of this policy?
b) Suggest an alternative policy to improve tape driveutilization and at the same time avoid system deadlock. What is themaximum number of jobs that can be in progress at once? What arethe bounds on the number of idling tape drives?
The unstable nucleus uranium-236 can be regarded as auniformly charged sphere of charge Q=+92e and radius $$\displaystyle{R}={7.4}\times{10}^{{-{15}}}$$ m. In nuclear fission, this can divide into twosmaller nuclei, each of 1/2 the charge and 1/2 the voume of theoriginal uranium-236 nucleus. This is one of the reactionsthat occurred n the nuclear weapon that exploded over Hiroshima, Japan in August 1945.
A. Find the radii of the two "daughter" nuclei of charge+46e.
B. In a simple model for the fission process, immediatelyafter the uranium-236 nucleus has undergone fission the "daughter"nuclei are at rest and just touching. Calculate the kineticenergy that each of the "daughter" nuclei will have when they arevery far apart.
C. In this model the sum of the kinetic energies of the two"daughter" nuclei is the energy released by the fission of oneuranium-236 nucleus. Calculate the energy released by thefission of 10.0 kg of uranium-236. The atomic mass ofuranium-236 is 236 u, where 1 u = 1 atomic mass unit $$\displaystyle={1.66}\times{10}^{{-{27}}}$$ kg. Express your answer both in joules and in kilotonsof TNT (1 kiloton of TNT releases 4.18 x 10^12 J when itexplodes).
A 75.0-kg man steps off a platform 3.10 m above the ground. Hekeeps his legs straight as he falls, but at the moment his feettouch the ground his knees begin to bend, and, treated as aparticle, he moves an additional 0.60 m before coming torest.
a) what is the speed at the instant his feet touch theground?
b) treating him as a particle, what is his acceleration(magnitude and direction) as he slows down, if the acceleration isassumed to be constant?
c) draw his free-body diagram (see section 4.6). in termsof forces on the diagram, what is the net force on him? usenewton's laws and the results of part (b) to calculate the averageforce his feet exert on the ground while he slows down. expressthis force in newtons and also as a multiple of his weight.
Montarello and Martins (2005) found that fifth grade students completed more mathematics problems correctly when simple problems were mixed in with their regular math assignments. To further explore this phenomenon, suppose that a researcher selects a standardized mathematics achievement test that produces a normal distribution of scores with a mean of $$\mu= 100\ and\ a\ standard\ deviation\ of\ \sigma = 24$$. The researcher modifies the test by inserting a set of very easy problems among the standardized questions and gives the modified test to a sample of n = 36 students. If the average test score for the sample is M = 120, is this result sufficient to conclude that inserting the easy questions improves student performance? Use a one-tailed test with $$\alpha = .05$$.
The null hypothesis in words is ?

Your math instructor tells you that next week's test is worth 100 points and contains 38 problems. Each problem is worth either 5 points or 2 points. Write two linear equations based upon this information and solve the system.
How many questions of each value are on the test?
a)Assuming that Albertine's mass is 60.0kg , what is $$\displaystyle\mu_{{k}}$$, the coefficient of kinetic friction between the chair and the waxed floor? Use $$\displaystyle{g}={9.80}\frac{{m}}{{s}^{{2}}}$$ for the magnitude of the acceleration due to gravity. Assume that the value of k found in Part A has three significant figures. Note that if you did not assume that k has three significant figures, it would be impossible to get three significant figures for $$\displaystyle\mu_{{k}}$$, since the length scale along the bottom of the applet does not allow you to measure distances to that accuracy with different values of k.