# The burial cloth of an Egyptian mummy is estimated to contain 560 g of the radioactive materialcarbon-14, which has a half life of 5730 years. a. Complete the table below. Make sure you justify your answer by showing all the steps. begin{array}{|l|l|l|}hline t(text{in years})&m(text{amoun of radioactive material})hline0&hline5730hline11460hline17190hlineend{array} b. Find an exponential function that models the amount of carbon-14 in the cloth, y, after t years. Make sure you justify your answer by showing all the steps. c. If the burial cloth is estimated to contain 49.5% of the original amount of carbon-14, how long ago was the mummy buried. Give exact answer. Make sure you justify your answer by showing all the steps.

Question
Exponential models
The burial cloth of an Egyptian mummy is estimated to contain 560 g of the radioactive materialcarbon-14, which has a half life of 5730 years.
a. Complete the table below. Make sure you justify your answer by showing all the steps.
$$\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{l}\right|}{l}{\left|{l}\right|}\right\rbrace}{h}{l}\in{e}{t}{\left(\text{in years}\right)}&{m}{\left(\text{amoun of radioactive material}\right)}\backslash{h}{l}\in{e}{0}&\backslash{h}{l}\in{e}{5730}\backslash{h}{l}\in{e}{11460}\backslash{h}{l}\in{e}{17190}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}$$
b. Find an exponential function that models the amount of carbon-14 in the cloth, y, after t years. Make sure you justify your answer by showing all the steps.
c. If the burial cloth is estimated to contain 49.5% of the original amount of carbon-14, how long ago was the mummy buried. Give exact answer. Make sure you justify your answer by showing all the steps.

2021-02-13
Given that
Initially the radioactive carbon-14 present in the burial cloth of the egyptian mummy is 560g.
The half life of carbon-14 is 5730 years.
The total amount of carbon-14 decayed after t years is given by
$$\displaystyle{A}={A}_{{0}}{\left({0.5}\right)}^{{{\frac{{{1}}}{{{h}}}}}}$$ (1)
Where, $$\displaystyle{A}_{{0}}$$ initial amount of carbon-14
t-time in years,
h-Half life of carbon-14
a) To complete table using the following calculation:
Now,
1) t=0 years, h=5730 years,$$\displaystyle{A}_{{0}}={560}$$g
$$\displaystyle{A}={A}_{{0}}{\left({0.5}\right)}^{{{\frac{{{1}}}{{{h}}}}}}$$
$$\displaystyle{A}={560}{\left({0.5}\right)}^{{{\frac{{{0}}}{{{5730}}}}}}$$
$$\displaystyle{A}={560}{\left({0.5}\right)}^{{0}}={560}{\left({1}\right)}$$
$$\displaystyle{A}={560}$$g
2) t=5730 years, h=5730 years,$$\displaystyle{A}_{{0}}={560}$$g
$$\displaystyle{A}={560}{\left({0.5}\right)}^{{{\frac{{{5730}}}{{{5730}}}}}}$$
$$\displaystyle{A}={560}{\left({0.5}\right)}^{{1}}={560}{\left({0.5}\right)}$$
$$\displaystyle{A}={280}$$g
3) t=11460 years, h=5730 years,$$\displaystyle{A}_{{0}}={560}$$g
$$\displaystyle{A}={560}{\left({0.5}\right)}^{{{\frac{{{11460}}}{{{5730}}}}}}$$
$$\displaystyle{560}{\left({0.5}\right)}^{{2}}={560}{\left({0.25}\right)}$$
$$\displaystyle{A}={140}$$g
3) t=17190 years, h=5730 years,$$\displaystyle{A}_{{0}}={560}$$g
$$\displaystyle{A}={560}{\left({0.5}\right)}^{{{\frac{{{17190}}}{{{5730}}}}}}$$
$$\displaystyle{A}={560}{\left({0.5}\right)}^{{3}}={560}{\left({0.125}\right)}$$
$$\displaystyle{A}={70}$$g
The table becomes
$$\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{l}\right|}{l}{\left|{l}\right|}\right\rbrace}{h}{l}\in{e}{t}{\left(\text{in years}\right)}&{m}{\left(\text{amoun of radioactive material}\right)}\backslash{h}{l}\in{e}{0}&{560}\backslash{h}{l}\in{e}{5730}&{280}\backslash{h}{l}\in{e}{11460}&{140}\backslash{h}{l}\in{e}{17190}&{70}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}$$
b)To find the exponential function that models the amount of carbon-14 in the cloth, y, after t years:
$$\displaystyle{A}={A}_{{0}}{e}^{{-{k}{t}}}$$
Here, At t=0, y=560 g,
k- rate of decay,
t- time in years.
The exponential function is
$$\displaystyle{y}={560}{e}^{{-{k}{t}}}$$
c) To find t, for k=49.5% :
49.5% of original amount of carbon-14 is
$$\displaystyle{49.5}\%\times{560}={\frac{{{49.5}}}{{{100}}}}\times{560}$$
$$\displaystyle={49.5}\times{5.6}$$
$$\displaystyle{49.5}\%\times{560}={277.2}$$g
Now, A0 =560, A= 277.2 g, h=5730 years, from (1)
$$\displaystyle{A}={A}_{{0}}{\left({0.5}\right)}^{{{\frac{{{t}}}{{{h}}}}}}$$
$$\displaystyle{277.2}={560}{\left({0.5}\right)}^{{{\frac{{{t}}}{{{5730}}}}}}$$
$$\displaystyle{\left({0.5}\right)}^{{{\frac{{{t}}}{{{5730}}}}}}={\frac{{{277.2}}}{{{560}}}}$$
$$\displaystyle{\left({0.5}\right)}^{{{\frac{{{t}}}{{{5730}}}}}}={0.495}$$
$$\displaystyle{\frac{{{t}}}{{{5730}}}}{\ln{{0.5}}}={\ln{{0.495}}}$$
$$\displaystyle{t}={5730}{\left({\frac{{{\ln{{0.495}}}}}{{{\ln{{0.5}}}}}}\right)}$$
$$\displaystyle{t}={5730}{\left({\frac{{-{0.7032}}}{{-{0.693}}}}\right)}$$
$$\displaystyle{t}={5730}{\left({1.015}\right)}$$
$$\displaystyle{t}={5814.33}$$ years
Thus, the mummy was burried before 5814.33 years.

### Relevant Questions

The burial cloth of an Egyptian mummy is estimated to contain 560 g of the radioactive materialcarbon-14, which has a half life of 5730 years.
a. Complete the table below. Make sure you justify your answer by showing all the steps.
$$\begin{array}{|l|l|l|}\hline t(\text{in years})&m(\text{amoun of radioactive material})\\\hline0&\\\hline5730\\\hline11460\\\hline17190\\\hline\end{array}$$
b. Find an exponential function that models the amount of carbon-14 in the cloth, y, after t years. Make sure you justify your answer by showing all the steps.
c. If the burial cloth is estimated to contain 49.5% of the original amount of carbon-14, how long ago was the mummy buried. Give exact answer. Make sure you justify your answer by showing all the steps.
Scientists are working with a sample of cobalt-56 in their laboratory. They begin with a sample that has 60 mg of cobalt-56, and they measure that after 31 days, the mass of cobalt-56 sample is 45.43 mg. Recall that the differential equation which models exponential decay is $$\frac{dm}{dt}=-km$$ and the solution of that differential equation if $$m(t)=m_0e^{-kt}$$, where $$m_0$$ is the initial mass and k is the relative decay rate.
a) Use the information provided to compute the relative decay rate k. Show your calculation (do not just cit a formula).
b) Use the information provided to determine the half-life of cobalt-56. Give your answer in days and round to the second decimal place. Show your calculation (do not just cite a formula).
c) To the nearest day, how many days will it take for the initial sample of 60mg of cobalt-56 to decay to just 10mg of cobalt-56?
d) What will be the rate at which the mass is decaying when the sample has 50mg of cobalt-56? Make sure to indicate the appropriate units and round your answer to three decimal places.
Scientists are working with a sample of cobalt-56 in their laboratory. They begin with a sample that has 60 mg of cobalt-56, and they measure that after 31 days, the mass of cobalt-56 sample is 45.43 mg. Recall that the differential equation which models exponential decay is $$\displaystyle{\frac{{{d}{m}}}{{{\left.{d}{t}\right.}}}}=-{k}{m}$$ and the solution of that differential equation if $$\displaystyle{m}{\left({t}\right)}={m}_{{0}}{e}^{{-{k}{t}}}$$, where $$\displaystyle{m}_{{0}}$$ is the initial mass and k is the relative decay rate.
a) Use the information provided to compute the relative decay rate k. Show your calculation (do not just cit a formula).
b) Use the information provided to determine the half-life of cobalt-56. Give your answer in days and round to the second decimal place. Show your calculation (do not just cite a formula).
c) To the nearest day, how many days will it take for the initial sample of 60mg of cobalt-56 to decay to just 10mg of cobalt-56?
d) What will be the rate at which the mass is decaying when the sample has 50mg of cobalt-56? Make sure to indicate the appropriate units and round your answer to three decimal places.
The following table lists the reported number of cases of infants born in the United States with HIV in recent years because their mother was infected.
Source:
Centers for Disease Control and Prevention.
$$\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}\text{Year}&\text{amp, Cases}\backslash{h}{l}\in{e}{1995}&{a}\mp,\ {295}\backslash{h}{l}\in{e}{1997}&{a}\mp,\ {166}\backslash{h}{l}\in{e}{1999}&{a}\mp,\ {109}\backslash{h}{l}\in{e}{2001}&{a}\mp,\ {115}\backslash{h}{l}\in{e}{2003}&{a}\mp,\ {94}\backslash{h}{l}\in{e}{2005}&{a}\mp,\ {107}\backslash{h}{l}\in{e}{2007}&{a}\mp,\ {79}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}$$
a) Plot the data on a graphing calculator, letting $$\displaystyle{t}={0}$$ correspond to the year 1995.
b) Using the regression feature on your calculator, find a quadratic, a cubic, and an exponential function that models this data.
c) Plot the three functions with the data on the same coordinate axes. Which function or functions best capture the behavior of the data over the years plotted?
d) Find the number of cases predicted by all three functions for 20152015. Which of these are realistic? Explain.
The half - life of a certain radioactive material is 85 days. An initial amount of the material has a mass of 801 kg Write an exponential function that models the decay of this material. Find how much radioactive material remains after 10 days. Round your answer to the nearest thousandth.
The half - life of a certain radioactive material is 85 days. An initial amount of the material has a mass of 801 kg Write an exponential function that models the decay of this material. Find how much radioactive material remains after 10 days. Round your answer to the nearest thousandth.
Several models have been proposed to explain the diversification of life during geological periods. According to Benton (1997), The diversification of marine families in the past 600 million years (Myr) appears to have followed two or three logistic curves, with equilibrium levels that lasted for up to 200 Myr. In contrast, continental organisms clearly show an exponential pattern of diversification, and although it is not clear whether the empirical diversification patterns are real or are artifacts of a poor fossil record, the latter explanation seems unlikely. In this problem, we will investigate three models fordiversification. They are analogous to models for populationgrowth, however, the quantities involved have a differentinterpretation. We denote by N(t) the diversification function,which counts the number of taxa as a function of time, and by rthe intrinsic rate of diversification.
(a) (Exponential Model) This model is described by $$\displaystyle{\frac{{{d}{N}}}{{{\left.{d}{t}\right.}}}}={r}_{{{e}}}{N}\ {\left({8.86}\right)}.$$ Solve (8.86) with the initial condition N(0) at time 0, and show that $$\displaystyle{r}_{{{e}}}$$ can be estimated from $$\displaystyle{r}_{{{e}}}={\frac{{{1}}}{{{t}}}}\ {\ln{\ }}{\left[{\frac{{{N}{\left({t}\right)}}}{{{N}{\left({0}\right)}}}}\right]}\ {\left({8.87}\right)}$$
(b) (Logistic Growth) This model is described by $$\displaystyle{\frac{{{d}{N}}}{{{\left.{d}{t}\right.}}}}={r}_{{{l}}}{N}\ {\left({1}\ -\ {\frac{{{N}}}{{{K}}}}\right)}\ {\left({8.88}\right)}$$ where K is the equilibrium value. Solve (8.88) with the initial condition N(0) at time 0, and show that $$\displaystyle{r}_{{{l}}}$$ can be estimated from $$\displaystyle{r}_{{{l}}}={\frac{{{1}}}{{{t}}}}\ {\ln{\ }}{\left[{\frac{{{K}\ -\ {N}{\left({0}\right)}}}{{{N}{\left({0}\right)}}}}\right]}\ +\ {\frac{{{1}}}{{{t}}}}\ {\ln{\ }}{\left[{\frac{{{N}{\left({t}\right)}}}{{{K}\ -\ {N}{\left({t}\right)}}}}\right]}\ {\left({8.89}\right)}$$ for $$\displaystyle{N}{\left({t}\right)}\ {<}\ {K}.$$
(c) Assume that $$\displaystyle{N}{\left({0}\right)}={1}$$ and $$\displaystyle{N}{\left({10}\right)}={1000}.$$ Estimate $$\displaystyle{r}_{{{e}}}$$ and $$\displaystyle{r}_{{{l}}}$$ for both $$\displaystyle{K}={1001}$$ and $$\displaystyle{K}={10000}.$$
(d) Use your answer in (c) to explain the following quote from Stanley (1979): There must be a general tendency for calculated values of $$\displaystyle{\left[{r}\right]}$$ to represent underestimates of exponential rates,because some radiation will have followed distinctly sigmoid paths during the interval evaluated.
(e) Explain why the exponential model is a good approximation to the logistic model when $$\displaystyle\frac{{N}}{{K}}$$ is small compared with 1.
The fox population in a certain region has a continuous growth rate of 6 percent per year. It is estimated that the population in the year 2000 was 18900.
(a) Find a function that models the population t years after 2000 (t=0 for 2000). Hint: Use an exponential function with base e.
(b) Use the function from part (a) to estimate the fox population in the year 2008.
The fox population in a certain region has a continuous growth rate of 6 percent per year. It is estimated that the population in the year 2000 was 18900.
(a) Find a function that models the population t years after 2000 (t=0 for 2000). Hint: Use an exponential function with base e.
(b) Use the function from part (a) to estimate the fox population in the year 2008.
The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem.
Suspect was Armed:
Black - 543
White - 1176
Hispanic - 378
Total - 2097
Suspect was unarmed:
Black - 60
White - 67
Hispanic - 38
Total - 165
Total:
Black - 603
White - 1243
Hispanic - 416
Total - 2262
Give your answer as a decimal to at least three decimal places.
a) What percent are Black?
b) What percent are Unarmed?
c) In order for two variables to be Independent of each other, the P $$(A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).$$
This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other).
Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed).
Remember, the previous answer is only correct if the variables are Independent.
d) Now let's get the real percent that are Black and Unarmed by using the table?
If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course.
Let's compare the percentage of unarmed shot for each race.
e) What percent are White and Unarmed?
f) What percent are Hispanic and Unarmed?
If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white.
Why is that?
This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage.
Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades
The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group.
g) What percent of blacks shot and killed by police were unarmed?
h) What percent of whites shot and killed by police were unarmed?
i) What percent of Hispanics shot and killed by police were unarmed?
You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police.
j) Why do you believe this is happening?
Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date.
...