Ask question

# Suppose you purchase an iphoneX for $720 when it initially launched. The resale value decreases 3.08% each month since launch. Write an exponential function that models this situation, where t is the number of months after launch. Call it P(t). (round to the nearest thousandth.) # Suppose you purchase an iphoneX for$720 when it initially launched. The resale value decreases 3.08% each month since launch. Write an exponential function that models this situation, where t is the number of months after launch. Call it P(t). (round to the nearest thousandth.)

Question
Exponential models asked 2020-11-01
Suppose you purchase an iphoneX for $720 when it initially launched. The resale value decreases 3.08% each month since launch. Write an exponential function that models this situation, where t is the number of months after launch. Call it P(t). (round to the nearest thousandth.) ## Answers (1) 2020-11-02 Given, Suppose you purchase an iPhone X for$720 when it initially launched. The resale value decreases 3.08% each month since launch.
So, the price of the iPhone X after 1 month $$\displaystyle={\left({\frac{{{100}-{3.08}}}{{{100}}}}\right)}\times{720}$$
$$\displaystyle={0.9692}\times{720}$$
Again, the price of the iPhone X after 2 months $$\displaystyle={\left({\frac{{{100}-{3.08}}}{{{100}}}}\right)}\times{0.9692}\times{720}$$
$$\displaystyle={0.9692}^{{2}}\times{720}$$
Therefore, the price of the iPhone X after t month $$\displaystyle={0.9692}^{{t}}\times{720}$$
$$\displaystyle={0.97}^{{t}}\times{720}$$
ANSWER
$$\displaystyle{P}{\left({t}\right)}={0.97}^{{t}}\times{720}$$

### Relevant Questions asked 2021-02-08
Suppose you purchase an iphoneX for $720 when it initially launched. The resale value decreases 3.08% each month since launch. Write an exponential function that models this situation, where t is the number of months after launch. Call it P(t). (round to the nearest thousandth.) asked 2021-05-26 You open a bank account to save for college and deposit$400 in the account. Each year, the balance in your account will increase $$5\%$$. a. Write a function that models your annual balance. b. What will be the total amount in your account after 7 yr? Use the exponential function and extend the table to answer part b. asked 2021-05-08
Write an exponential growth or decay function to model each situation. Then find the value of the function after the given amount of time. A new car is worth \$25,000, and its value decreases by 15% each year; 6 years. asked 2021-04-20
(1 pt) A new software company wants to start selling DVDs withtheir product. The manager notices that when the price for a DVD is19 dollars, the company sells 140 units per week. When the price is28 dollars, the number of DVDs sold decreases to 90 units per week.Answer the following questions:
A. Assume that the demand curve is linear. Find the demand, q, as afunction of price, p.
Answer: q=
B. Write the revenue function, as a function of price. Answer:R(p)=
C. Find the price that maximizes revenue. Hint: you may sketch thegraph of the revenue function. Round your answer to the closestdollar.
Answer:
D. Find the maximum revenue. Answer: asked 2021-02-21
The number of users on a website has grown exponentially since its launch. After 2 months, there were 300 users. After 4 months there were 30000 users. Find the exponential function that models the number of users x months after the website was launched. asked 2020-12-24
The half - life of a certain radioactive material is 85 days. An initial amount of the material has a mass of 801 kg Write an exponential function that models the decay of this material. Find how much radioactive material remains after 10 days. Round your answer to the nearest thousandth. asked 2021-01-02
The half - life of a certain radioactive material is 85 days. An initial amount of the material has a mass of 801 kg Write an exponential function that models the decay of this material. Find how much radioactive material remains after 10 days. Round your answer to the nearest thousandth. asked 2021-03-07
This problem is about the equation
dP/dt = kP-H , P(0) = Po,
where k > 0 and H > 0 are constants.
If H = 0, you have dP/dt = kP , which models expontialgrowth. Think of H as a harvesting term, tending to reducethe rate of growth; then there ought to be a value of H big enoughto prevent exponential growth.
Problem: find acondition on H, involving $$\displaystyle{P}_{{0}}$$ and k, that will prevent solutions from growing exponentially. asked 2020-11-01
Scientists are working with a sample of cobalt-56 in their laboratory. They begin with a sample that has 60 mg of cobalt-56, and they measure that after 31 days, the mass of cobalt-56 sample is 45.43 mg. Recall that the differential equation which models exponential decay is $$\frac{dm}{dt}=-km$$ and the solution of that differential equation if $$m(t)=m_0e^{-kt}$$, where $$m_0$$ is the initial mass and k is the relative decay rate.
a) Use the information provided to compute the relative decay rate k. Show your calculation (do not just cit a formula).
b) Use the information provided to determine the half-life of cobalt-56. Give your answer in days and round to the second decimal place. Show your calculation (do not just cite a formula).
c) To the nearest day, how many days will it take for the initial sample of 60mg of cobalt-56 to decay to just 10mg of cobalt-56?
d) What will be the rate at which the mass is decaying when the sample has 50mg of cobalt-56? Make sure to indicate the appropriate units and round your answer to three decimal places. asked 2020-11-22
Scientists are working with a sample of cobalt-56 in their laboratory. They begin with a sample that has 60 mg of cobalt-56, and they measure that after 31 days, the mass of cobalt-56 sample is 45.43 mg. Recall that the differential equation which models exponential decay is $$\displaystyle{\frac{{{d}{m}}}{{{\left.{d}{t}\right.}}}}=-{k}{m}$$ and the solution of that differential equation if $$\displaystyle{m}{\left({t}\right)}={m}_{{0}}{e}^{{-{k}{t}}}$$, where $$\displaystyle{m}_{{0}}$$ is the initial mass and k is the relative decay rate.
a) Use the information provided to compute the relative decay rate k. Show your calculation (do not just cit a formula).
b) Use the information provided to determine the half-life of cobalt-56. Give your answer in days and round to the second decimal place. Show your calculation (do not just cite a formula).
c) To the nearest day, how many days will it take for the initial sample of 60mg of cobalt-56 to decay to just 10mg of cobalt-56?
d) What will be the rate at which the mass is decaying when the sample has 50mg of cobalt-56? Make sure to indicate the appropriate units and round your answer to three decimal places.
...