Taylor series Write out the first three nonzero terms of the Taylor series for the following functions centered at the given point a. Then write the series using summation notation. f(x)=cosh(2x-2),a=1

rocedwrp 2020-12-29 Answered
Taylor series Write out the first three nonzero terms of the Taylor series for the following functions centered at the given point a. Then write the series using summation notation.
\(\displaystyle{f{{\left({x}\right)}}}={\text{cosh}{{\left({2}{x}-{2}\right)}}},{a}={1}\)

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question

Expert Answer

sovienesY
Answered 2020-12-30 Author has 10181 answers
We have to write first three nonzero terms of the taylor series for the function
\(\displaystyle{f{{\left({x}\right)}}}={\text{cosh}{{\left({2}{x}-{2}\right)}}},{a}={1}\)
\(\displaystyle{f{{\left({x}\right)}}}={\text{cosh}{{\left({2}{x}-{2}\right)}}},{f{{\left({1}\right)}}}={\text{cosh}{{\left({0}\right)}}}={1}\)
\(\displaystyle{f}'{\left({x}\right)}={2}{\text{sinh}{{\left({2}{x}-{2}\right)}}},{f}'{\left({1}\right)}={2}{\text{sinh}{{\left({0}\right)}}}={0}\)
\(\displaystyle{f}{''}{\left({x}\right)}={4}{\text{cosh}{{\left({2}{x}-{2}\right)}}},{f}{''}{\left({1}\right)}={4}{\text{cosh}{{\left({0}\right)}}}={4}\)
\(\displaystyle{f}{'''}{\left({x}\right)}={8}{\text{sinh}{{\left({2}{x}-{2}\right)}}},{f}{'''}{\left({1}\right)}={8}{\text{sinh}{{\left({0}\right)}}}={0}\)
\(\displaystyle{{f}^{{4}}{\left({x}\right)}}={16}{\text{cosh}{{\left({2}{x}-{2}\right)}}},{{f}^{{4}}{\left({1}\right)}}={16}{\text{cosh}{{\left({0}\right)}}}={16}\)
\(\displaystyle{{f}^{{5}}{\left({x}\right)}}={32}{\text{sinh}{{\left({2}{x}-{2}\right)}}},{{f}^{{5}}{\left({1}\right)}}={32}{\text{sinh}{{\left({0}\right)}}}={32}\)
\(\displaystyle{{f}^{{6}}{\left({x}\right)}}={64}{\text{cosh}{{\left({2}{x}-{2}\right)}}},{{f}^{{6}}{\left({1}\right)}}={64}{\text{cosh}{{\left({0}\right)}}}={64}\)
First term \(\displaystyle{f{{\left({1}\right)}}}={1}\)
Second term \(\displaystyle{f}'{\left({1}\right)}{\left({x}-{1}\right)}={0},{\left({x}-{1}\right)}={0}\)
Third term \(\displaystyle{\frac{{{f}{''}{\left({1}\right)}}}{{{2}!}}}{\left({x}-{1}\right)}^{{2}}={\frac{{{4}}}{{{2}!}}}{\left({x}-{1}\right)}^{{2}}={2}{\left({x}-{1}\right)}^{{2}}\)
Third term \(\displaystyle{\frac{{{f}{'''}{\left({1}\right)}}}{{{3}!}}}{\left({x}-{1}\right)}^{{3}}={\frac{{{0}}}{{{3}!}}}{\left({x}-{1}\right)}^{{3}}={0}\)
Fourth term \(\displaystyle{\frac{{{{f}^{{4}}{\left({1}\right)}}}}{{{4}!}}}{\left({x}-{1}\right)}^{{4}}={\frac{{{16}}}{{{4}!}}}{\left({x}-{1}\right)}^{{4}}={\frac{{{2}}}{{{3}}}}{\left({x}-{1}\right)}^{{4}}\)
Fifth term \(\displaystyle{\frac{{{{f}^{{5}}{\left({1}\right)}}}}{{{5}!}}}{\left({x}-{1}\right)}^{{5}}={\frac{{{0}}}{{{5}!}}}{\left({x}-{1}\right)}^{{5}}={0}\)
Sixth term \(\displaystyle{\frac{{{{f}^{{6}}{\left({1}\right)}}}}{{{6}!}}}{\left({x}-{1}\right)}^{{6}}={\frac{{{64}}}{{{6}!}}}{\left({x}-{1}\right)}^{{6}}\)
So, first three non-zero term of taylor series are
\(\displaystyle{1},{2}{\left({x}-{1}\right)}^{{2}},{\frac{{{2}}}{{{3}}}}{\left({x}-{1}\right)}^{{4}}\)
Now, we will write series summation notation
\(\displaystyle{f{{\left({x}\right)}}}={\sum_{{{n}={0}}}^{\infty}}{\frac{{{{f}^{{{\left({n}\right)}}}{\left({1}\right)}}}}{{{n}!}}}{\left({x}-{1}\right)}^{{n}}\)
\(\displaystyle={f{{\left({1}\right)}}}+{\frac{{{{f}^{{{\left({1}\right)}}}{\left({1}\right)}}}}{{{1}!}}}{\left({x}-{1}\right)}+{\frac{{{{f}^{{{\left({2}\right)}}}{\left({1}\right)}}}}{{{2}!}}}{\left({x}-{1}\right)}^{{2}}+{\frac{{{{f}^{{{\left({3}\right)}}}{\left({1}\right)}}}}{{{3}!}}}{\left({x}-{1}\right)}^{{3}}+{\frac{{{{f}^{{{\left({4}\right)}}}{\left({1}\right)}}}}{{{4}!}}}{\left({x}-{1}\right)}^{{4}}+{\frac{{{{f}^{{{\left({5}\right)}}}{\left({1}\right)}}}}{{{5}!}}}{\left({x}-{1}\right)}^{{5}}+{\frac{{{{f}^{{{\left({6}\right)}}}{\left({1}\right)}}}}{{{6}!}}}{\left({x}-{1}\right)}^{{6}}+\ldots\)
\(\displaystyle={1}+{0}+{\frac{{{4}}}{{{2}!}}}{\left({x}-{1}\right)}^{{2}}+{0}+{\frac{{{16}}}{{{4}!}}}{\left({x}-{1}\right)}^{{4}}+{0}+{\frac{{{64}}}{{{6}!}}}{\left({x}-{1}\right)}^{{6}}+\ldots\)
\(\displaystyle={1}+{\frac{{{4}}}{{{2}!}}}{\left({x}-{1}\right)}^{{2}}+{\frac{{{16}}}{{{4}!}}}{\left({x}-{1}\right)}^{{4}}+{\frac{{{64}}}{{{6}!}}}{\left({x}-{1}\right)}^{{6}}+\ldots\)
\(\displaystyle={\sum_{{{n}={0}}}^{\infty}}{\frac{{{2}^{{{2}{n}}}}}{{{\left({2}{n}\right)}!}}}{\left({x}-{1}\right)}^{{{2}{n}}}\)
Have a similar question?
Ask An Expert
9
 

Expert Community at Your Service

  • Live experts 24/7
  • Questions are typically answered in as fast as 30 minutes
  • Personalized clear answers
Learn more

Relevant Questions

asked 2021-01-02
Write out the first three nonzero terms of the Taylor series for the following functions centered at the given point a. Then write the series using summation notation.
\(f(x)=\tan^{-1}4x,a=0\)
asked 2021-01-19
Taylor series
a. Use the definition of a Taylor series to find the first four nonzero terms of the Taylor series for the given function centered at a.
b. Write the power series using summation notation.
\(f(x)=2^x,a=1\)
asked 2021-03-11
Taylor series and interval of convergence
a. Use the definition of a Taylor/Maclaurin series to find the first four nonzero terms of the Taylor series for the given function centered at a.
b. Write the power series using summation notation.
c. Determine the interval of convergence of the series.
\(f(x)=\log_3(x+1),a=0\)
asked 2021-11-06
Write out he first four terms of the Maclaurin series of f(x) if \(\displaystyle{f{{\left({0}\right)}}}={2},\ {f}'{\left({0}\right)}={3},\ {f}{''}{\left({0}\right)}={4},\ {f}{'''}{\left({0}\right)}={12}\)
asked 2020-11-22
Any method
a. Use any analytical method to find the first four nonzero terms of the Taylor series centered at 0 for the following functions. You do not need to use the definition of the Taylor series coefficients.
\(f(x)=x^2\cos x^2\)
asked 2021-11-14
Write an equivalent series with the index of summation beginning at = 1.
\(\displaystyle{\sum_{{{n}={0}}}^{\infty}}{\left(-{1}\right)}^{{n}}+{1}{\left({n}+{1}\right)}{x}^{{n}}\)
asked 2021-11-03
Find a power series for the function, centered at c, and determine the interval of convergence.
\(\displaystyle{g{{\left({x}\right)}}}=\frac{{3}}{{2}}{x}-{1},{c}={2}\)

Plainmath recommends

  • Ask your own question for free.
  • Get a detailed answer even on the hardest topics.
  • Ask an expert for a step-by-step guidance to learn to do it yourself.
Ask Question
...