What is 12(cos 60 + i sin 60)

Question
Complex numbers
asked 2020-10-21
What is \(\displaystyle{12}{\left({\cos{{60}}}+{i}{\sin{{60}}}\right)}\)

Answers (1)

2020-10-22
\(\displaystyle{12}{\left({\cos{{60}}}+{i}{\sin{{60}}}\right)}={12}{\left(\frac{{1}}{{2}}+{i}\frac{\sqrt{{3}}}{{2}}\right)}={6}+{6}{i}\sqrt{{3}}={6}{\left({1}+{i}\sqrt{{3}}\right)}\).
0

Relevant Questions

asked 2020-11-30
Write the standard form of the complex number.
\(\displaystyle{12}{\left({\cos{{\left({60}^{\circ}\right)}}}+{i}{\sin{{\left({60}^{\circ}\right)}}}\right)}\)
asked 2020-10-19
Is the expression true:
\(\displaystyle\frac{{{\cos{{\left(-\theta\right)}}}}}{{{1}+{\sin{{\left(-\theta\right)}}}}}={\sec{\theta}}+{\tan{\theta}}\)
asked 2021-01-24
A bird flies in the xy-plane with a position vector given by \(\displaystyle\vec{{{r}}}={\left(\alpha{t}-\beta{t}^{{3}}\right)}\hat{{{i}}}+\gamma{t}^{{2}}\hat{{{j}}}\), with \(\displaystyle\alpha={2.4}\ \frac{{m}}{{s}},\beta={1.6}\ \frac{{m}}{{s}^{{3}}}\) and \(\displaystyle\gamma={4.0}\ \frac{{m}}{{s}^{{2}}}\). The positive y-direction is vertically upward. At the bird is at the origin.
Calculate the velocity vector of the bird as a function of time.
Calculate the acceleration vector of the bird as a function oftime.
What is the bird's altitude(y-coordinate) as it flies over x=0 for the first time after ?
asked 2020-12-25
Which operation could we perform in order to find the number of milliseconds in a year?
\(\displaystyle{60}\cdot{60}\cdot{24}\cdot{7}\cdot{365}\)
\(\displaystyle{1000}\cdot{60}\cdot{60}\cdot{24}\cdot{365}\)
\(\displaystyle{24}\cdot{60}\cdot{100}\cdot{7}\cdot{52}\)
\(\displaystyle{1000}\cdot{60}\cdot{24}\cdot{7}\cdot{52}?\)
asked 2021-01-24
Write each complex number in standard form. \(\displaystyle{2}{\left({{\cos{{30}}}^{\circ}+}{i}{\sin{{30}}}^{\circ}\right)}\)
asked 2021-02-15
Write the complex number in trigonometric form r(cos theta + i sin theta),with theta in the interval \(\displaystyle{\left[{0}^{\circ},{360}^{\circ}\right]}\)
\(\displaystyle{5}\sqrt{{3}}+{5}{i}\)
asked 2020-10-31
Which statement is correct?
\(\displaystyle\frac{{{3.56}\cdot{10}^{{2}}}}{{{1.09}\cdot{10}^{{4}}}}\le{\left({4.08}\cdot{10}^{{2}}\right)}{\left({1.95}\cdot{10}^{{-{{6}}}}\right)}\)
\(\displaystyle\frac{{{3.56}\cdot{10}^{{2}}}}{{{1.09}\cdot{10}^{{4}}}}{<}{\left({4.08}\cdot{10}^{{2}}\right)}{\left({1.95}\cdot{10}^{{-{{6}}}}\right)}\)
\(\displaystyle\frac{{{3.56}\cdot{10}^{{2}}}}{{{1.09}\cdot{10}^{{4}}}}{>}{\left({4.08}\cdot{10}^{{2}}\right)}{\left({1.95}\cdot{10}^{{-{{6}}}}\right)}\)
\(\displaystyle\frac{{{3.56}\cdot{10}^{{2}}}}{{{1.09}\cdot{10}^{{4}}}}={\left({4.08}\cdot{10}^{{2}}\right)}{\left({1.95}\cdot{10}^{{-{{6}}}}\right)}\)
asked 2020-11-08
Replace the 880-lb force acting at point A by a force-couple system at
(a) point O
and
(b) point B.
asked 2020-11-06
Solve the equation:
\(\displaystyle{9}^{{x}}-{3}^{{{x}+{1}}}+{1}={0}\)
asked 2020-12-24
918327461923874632928/327861038736208137463408473640 - 82736287346219348/83618273619736876376287616919128736973
...