# Fill in each blank so that the resulting statement is true. "After performing polynomial long division, the answer may be checked by multiplying the ____ by the ____, and then adding the ____. You should obtain the ____."

Question
Polynomials
Fill in each blank so that the resulting statement is true. "After performing polynomial long division, the answer may be checked by multiplying the ____ by the ____, and then adding the ____. You should obtain the ____."

2020-11-28
After performing polynomial long division, the answer may be checked by multiplying the quotient by the divisor, and then adding the remainder. You should obtain the dividend.

### Relevant Questions

Fill in the bla
so the resulting statement is true.
when solving
$$3x^2+2y^2=35$$
$$4x^2+3y^2=48$$
by the addition method, we can eliminate $$x^2$$ by the multiplying the first equation by -4 and the second equation by __________ and then adding the equations
Fill in the bla
so the resulting statement is true
when solving
4x,-,3y=15
3x-2y=10
by the addition method we can eliminate y by multiplying the first equation by 2 and the second equation by ______, and then adding the equations
The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem.
Suspect was Armed:
Black - 543
White - 1176
Hispanic - 378
Total - 2097
Suspect was unarmed:
Black - 60
White - 67
Hispanic - 38
Total - 165
Total:
Black - 603
White - 1243
Hispanic - 416
Total - 2262
Give your answer as a decimal to at least three decimal places.
a) What percent are Black?
b) What percent are Unarmed?
c) In order for two variables to be Independent of each other, the P $$(A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).$$
This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other).
Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed).
Remember, the previous answer is only correct if the variables are Independent.
d) Now let's get the real percent that are Black and Unarmed by using the table?
If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course.
Let's compare the percentage of unarmed shot for each race.
e) What percent are White and Unarmed?
f) What percent are Hispanic and Unarmed?
If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white.
Why is that?
This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage.
Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades
The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group.
g) What percent of blacks shot and killed by police were unarmed?
h) What percent of whites shot and killed by police were unarmed?
i) What percent of Hispanics shot and killed by police were unarmed?
You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police.
j) Why do you believe this is happening?
Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date.
Fill in the blank/s: When solving $$3x^2 + 2y^2 = 35, 4x^2 + 3y^2 = 48$$ by the addition method, we can eliminate x2 by multiplying the first equation by -4 and the second equation by _________ and then adding the equations.
Fill in the blank/s: When solving x = 3y + 2 and 5x - 15y = 10 by the substitution method, we obtain 10 = 10, so the solution set is ___________ The equations in this system are called ___________ . If you attempt to solve such a system by graphing, you will obtain two lines that ___________
Whether the statement “When performing the division $$\frac{x^{5} +1}{x + 1}$$ there's no need for me to follow all the steps involved in polynomial long division because I can work the problem in my head and see that the quotient must be $$x^{4} + 1$$ ”makes sense or not.” Makes sense or not.
Is statistical inference intuitive to babies? In other words, are babies able to generalize from sample to population? In this study,1 8-month-old infants watched someone draw a sample of five balls from an opaque box. Each sample consisted of four balls of one color (red or white) and one ball of the other color. After observing the sample, the side of the box was lifted so the infants could see all of the balls inside (the population). Some boxes had an “expected” population, with balls in the same color proportions as the sample, while other boxes had an “unexpected” population, with balls in the opposite color proportion from the sample. Babies looked at the unexpected populations for an average of 9.9 seconds (sd = 4.5 seconds) and the expected populations for an average of 7.5 seconds (sd = 4.2 seconds). The sample size in each group was 20, and you may assume the data in each group are reasonably normally distributed. Is this convincing evidence that babies look longer at the unexpected population, suggesting that they make inferences about the population from the sample? Let group 1 and group 2 be the time spent looking at the unexpected and expected populations, respectively. A) Calculate the relevant sample statistic. Enter the exact answer. Sample statistic: _____ B) Calculate the t-statistic. Round your answer to two decimal places. t-statistic = ___________ C) Find the p-value. Round your answer to three decimal places. p-value =
$$\displaystyle{x}^{{2}}−{3}{x}.$$