Analysis of skunk spray yields a molecule with 44.77% C, 7.46% H and 47.76% S. What is the chemical formula for this molecule found in the spray from skunks that scientists think is partly responsible for the strong odor?

Analysis of skunk spray yields a molecule with 44.77% C, 7.46% H and 47.76% S. What is the chemical formula for this molecule found in the spray from skunks that scientists think is partly responsible for the strong odor?

asked 2021-02-15
Analysis of skunk spray yields a molecule with 44.77% C, 7.46% H and 47.76% S. What is the chemical formula for this molecule found in the spray from skunks that scientists think is partly responsible for the strong odor?

Answers (1)

Atomic masses C = 12 g / mol H = 1 g / mol S = 32 g / mol Given masses ( assuming 100g of substance ) C = 44.77 g H = 7.46 g S = 47.76 g Moles C = 44.77 / 12 = 3.73 H = 7.46 / 1 = 7.46 S = 47.76 / 32 = 1.49 Molar ratio C : H : S = 3.73 : 7.46 : 1.49 Dividing by the smallest ratio , = 2.5 : 5 : 1 = 5 : 10 : 2 C5H10S2 is the required compound

Relevant Questions

asked 2021-04-13
As depicted in the applet, Albertine finds herself in a very odd contraption. She sits in a reclining chair, in front of a large, compressed spring. The spring is compressed 5.00 m from its equilibrium position, and a glass sits 19.8m from her outstretched foot.
a)Assuming that Albertine's mass is 60.0kg , what is \(\displaystyle\mu_{{k}}\), the coefficient of kinetic friction between the chair and the waxed floor? Use \(\displaystyle{g}={9.80}\frac{{m}}{{s}^{{2}}}\) for the magnitude of the acceleration due to gravity. Assume that the value of k found in Part A has three significant figures. Note that if you did not assume that k has three significant figures, it would be impossible to get three significant figures for \(\displaystyle\mu_{{k}}\), since the length scale along the bottom of the applet does not allow you to measure distances to that accuracy with different values of k.
asked 2021-03-07
This problem is about the equation
dP/dt = kP-H , P(0) = Po,
where k > 0 and H > 0 are constants.
If H = 0, you have dP/dt = kP , which models expontialgrowth. Think of H as a harvesting term, tending to reducethe rate of growth; then there ought to be a value of H big enoughto prevent exponential growth.
Problem: find acondition on H, involving \(\displaystyle{P}_{{0}}\) and k, that will prevent solutions from growing exponentially.
asked 2021-02-19
A 10 kg objectexperiences a horizontal force which causes it to accelerate at 5 \(\displaystyle\frac{{m}}{{s}^{{2}}}\), moving it a distance of 20 m, horizontally.How much work is done by the force?
A ball is connected to a rope and swung around in uniform circular motion.The tension in the rope is measured at 10 N and the radius of thecircle is 1 m. How much work is done in one revolution around the circle?
A 10 kg weight issuspended in the air by a strong cable. How much work is done, perunit time, in suspending the weight?
A 5 kg block is moved up a 30 degree incline by a force of 50 N, parallel to the incline. The coefficient of kinetic friction between the block and the incline is .25. How much work is done by the 50 N force in moving the block a distance of 10 meters? What is the total workdone on the block over the same distance?
What is the kinetic energy of a 2 kg ball that travels a distance of 50 metersin 5 seconds?
A ball is thrown vertically with a velocity of 25 m/s. How high does it go? What is its velocity when it reaches a height of 25 m?
A ball with enough speed can complete a vertical loop. With what speed must the ballenter the loop to complete a 2 m loop? (Keep in mind that the velocity of the ball is not constant throughout the loop).
asked 2021-05-16
Consider the curves in the first quadrant that have equationsy=Aexp(7x), where A is a positive constant. Different valuesof A give different curves. The curves form a family,F. Let P=(6,6). Let C be the number of the family Fthat goes through P.
A. Let y=f(x) be the equation of C. Find f(x).
B. Find the slope at P of the tangent to C.
C. A curve D is a perpendicular to C at P. What is the slope of thetangent to D at the point P?
D. Give a formula g(y) for the slope at (x,y) of the member of Fthat goes through (x,y). The formula should not involve A orx.
E. A curve which at each of its points is perpendicular to themember of the family F that goes through that point is called anorthogonal trajectory of F. Each orthogonal trajectory to Fsatisfies the differential equation dy/dx = -1/g(y), where g(y) isthe answer to part D.
Find a function of h(y) such that x=h(y) is the equation of theorthogonal trajectory to F that passes through the point P.
asked 2021-03-22
The equilibrium separation of H atoms in the H2 molecule is 0.074 nm, calculate the energies and wavelengths of photons for the rotational transitions (a) L = 1 to L = 0, (b) L = 2 to L = 1, and (c) L =3 to L = 2
asked 2021-04-21
The crane shown in the drawing is lifting a 182-kg crate upward with an acceleration of \(\displaystyle{1.5}\frac{{m}}{{s}^{{2}}}\). The cable from the crate passes over a solid cylindrical pulley at the top of the boom. The pulley has a mass of 130 kg. The cable is then wound ontoa hollow cylindrical drum that is mounted on the deck of the crane.The mass of the drum is 150 kg, and its radius is 0.76 m. The engine applies a counter clockwise torque to the drum in order towind up the cable. What is the magnitude of this torque? Ignore the mass of the cable.
asked 2021-02-23
Solid NaBr is slowly added to a solution that is 0.010 M inCu+ and 0.010 M in Ag+. (a) Which compoundwill begin to precipitate first? (b) Calculate [Ag+] when CuBr justbegins to precipitate. (c) What percent of Ag+ remains in solutionat this point?
a) AgBr: \(\displaystyle{\left({0.010}+{s}\right)}{s}={4.2}\cdot{10}^{{-{8}}}\) \(\displaystyle{s}={4.2}\cdot{10}^{{-{9}}}{M}{B}{r}\) needed form PPT
CuBr: \(\displaystyle{\left({0.010}+{s}\right)}{s}={7.7}\cdot{\left({0.010}+{s}\right)}{s}={7.7}\cdot{10}^{{-{13}}}\) Ag+=\(\displaystyle{1.8}\cdot{10}^{{-{7}}}\)
b) \(\displaystyle{4.2}\cdot{10}^{{-{6}}}{\left[{A}{g}+\right]}={7.7}\cdot{10}^{{-{13}}}\) [Ag+]\(\displaystyle={1.8}\cdot{10}^{{-{7}}}\)
c) \(\displaystyle{\frac{{{1.8}\cdot{10}^{{-{7}}}}}{{{0.010}{M}}}}\cdot{100}\%={0.18}\%\)
asked 2021-03-30
A long, straight, copper wire with a circular cross-sectional area of \(\displaystyle{2.1}{m}{m}^{{2}}\) carries a current of 16 A. The resistivity of the material is \(\displaystyle{2.0}\times{10}^{{-{8}}}\) Om.
a) What is the uniform electric field in the material?
b) If the current is changing at the rate of 4000 A/s, at whatrate is the electric field in the material changing?
c) What is the displacement current density in the material in part (b)?
d) If the current is changing as in part (b), what is the magnitude of the magnetic field 6.0cm from the center of the wire? Note that both the conduction current and the displacement currentshould be included in the calculation of B. Is the contribution from the displacement current significant?
asked 2021-05-12
4.7 A multiprocessor with eight processors has 20attached tape drives. There is a large number of jobs submitted tothe system that each require a maximum of four tape drives tocomplete execution. Assume that each job starts running with onlythree tape drives for a long period before requiring the fourthtape drive for a short period toward the end of its operation. Alsoassume an endless supply of such jobs.
a) Assume the scheduler in the OS will not start a job unlessthere are four tape drives available. When a job is started, fourdrives are assigned immediately and are not released until the jobfinishes. What is the maximum number of jobs that can be inprogress at once? What is the maximum and minimum number of tapedrives that may be left idle as a result of this policy?
b) Suggest an alternative policy to improve tape driveutilization and at the same time avoid system deadlock. What is themaximum number of jobs that can be in progress at once? What arethe bounds on the number of idling tape drives?
asked 2020-11-23
Geographical Analysis (Oct. 2006) published a study of a new method for analyzing remote-sensing data from satellite pixels in order to identify urban land cover. The method uses a numerical measure of the distribution of gaps, or the sizes of holes, in the pixel, called lacunarity. Summary statistics for the lacunarity measurements in a sample of 100 grassland pixels are x¯=225 and s=20s=20. It is known that the mean lacunarity measurement for all grassland pixels is 220. The method will be effective in identifying land cover if the standard deviation of the measurements is 10% (or less) of the true mean (i.e., if the standard deviation is less than 22). a. Give the null and alternative hypotheses for a test to determine whether, in fact, the standard deviation of all grassland pixels is less than 22. b. A MINITAB analysis of the data is provided below. Locate and interpret the p-value of the test. Use α=.10α=.10. Test for One Standard Deviation Method Null hypothesisSigma = 22 Method Alternative hypothesisSigma = < 22 The standard method is only for the normal distribution. Statistics NStDevVariance 10020.0400 Tests