Question

write B as a linear combination of the other matrices, if possible. B=[[2,-2,3],[0,0,-2],[0,0,2]] A_1=[[1,0,0],[0,1,0],[0,0,1]] A_2=[[0,1,1],[0,0,1],[0,0,0]] A_3=[[-1,0,-1],[0,1,0],[0,0,-1]] A_4=[[1,-1,1],[0,-1,-1],[0,0,1]]

Matrices
ANSWERED
asked 2021-01-13
write B as a linear combination of the other matrices, if possible.
\(B=[[2,-2,3],[0,0,-2],[0,0,2]]\)
\(A_1=[[1,0,0],[0,1,0],[0,0,1]]\)
\(A_2=[[0,1,1],[0,0,1],[0,0,0]]\)
\(A_3=[[-1,0,-1],[0,1,0],[0,0,-1]]\)
\(A_4=[[1,-1,1],[0,-1,-1],[0,0,1]]\)

Answers (1)

2021-01-14
image
image
image
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2020-11-07
write B as a linear combination of the other matrices, if possible.
\(B=\begin{bmatrix}2 & 3 \\-4 & 2 \end{bmatrix} , A_1=\begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix} , A_2=\begin{bmatrix}0 &-1 \\1 & 0 \end{bmatrix} , A_3=\begin{bmatrix}1 &1 \\0 & 1 \end{bmatrix}\)
asked 2021-01-15
write B as a linear combination of the other matrices, if possible.
\(B=\begin{bmatrix}2 & 5 \\0 & 3 \end{bmatrix} , A_1=\begin{bmatrix}1 & 2 \\-1 & 1 \end{bmatrix} , A_2=\begin{bmatrix}0 &1 \\2 & 1 \end{bmatrix}\)
asked 2021-07-22

a)Let \(\displaystyle{A}={\left\lbrace{1},{2},{3},{4},{5},{6}\right\rbrace},{A}_{{1}}={\left\lbrace{1},{2}\right\rbrace},{A}_{{2}}={\left\lbrace{3},{4}\right\rbrace}\ \text{ and }\ {A}_{{3}}={\left\lbrace{5},{6}\right\rbrace}.{I}{s}{\left\lbrace{A}_{{1}},{A}_{{2}},{A}_{{3}}\right\rbrace}\) a partition of A?
b) Let Z be the set of all integers and let:
\(\displaystyle{T}_{{0}}={\left\lbrace{n}\in{Z}{\mid}{n}={3}{k},\ \text{ for some integer }\ {k}\right\rbrace}\)
\(\displaystyle{T}_{{1}}={\left\lbrace{n}\in{Z}{\mid}{n}={3}{k}+{1},\ \text{ for some integer }\ {k}\right\rbrace}\) ,and
\(\displaystyle{T}_{{2}}={\left\lbrace{n}\in{Z}{\mid}{n}={3}{k}+{2},\ \text{ for some integer }\ {k}\right\rbrace}\)
Is \(\displaystyle{\left\lbrace{T}_{{0}},{T}_{{1}},{T}_{{2}}\right\rbrace}\) a partition of Z?
image

asked 2021-08-21

If \(a_1,a_2,a_3\dots \ \text{and} \ b_1,b_2,b_3\dots\) are geometric sequences, show that \(a_1b_1,a_2b_2,a_3b_3,\dots\) is also geometric sequence.

...