\(\displaystyle{y}={0.15}{\left(\frac{{3}}{{2}}\right)}^{{x}}\)

The function represents exponential growth because here \(a = 0.15\) which is larger than 0 and \(b = 1.5\) which is larger than 1. So, growth factor \(b = 1.5\)

asked 2021-06-08

Tell whether the function represents exponential growth or exponential decay. Identify the growth or decay factor.

\(\displaystyle{f{{\left({x}\right)}}}={7}\cdot{0.32}^{{x}}\)

\(\displaystyle{f{{\left({x}\right)}}}={7}\cdot{0.32}^{{x}}\)

asked 2021-06-13

Identify the function as exponential growth or exponential decay.Then identify the growth or decay factor.

\(\displaystyle{y}={0.15}{\left(\frac{{3}}{{2}}\right)}^{{x}}\)

\(\displaystyle{y}={0.15}{\left(\frac{{3}}{{2}}\right)}^{{x}}\)

asked 2021-06-22

Tell whether the function represents exponential growth or exponential decay. Explain.

\(\displaystyle{y}={2}{\left({2.1}\right)}^{{x}}\)

\(\displaystyle{y}={2}{\left({2.1}\right)}^{{x}}\)

asked 2021-05-05

Tell whether the function represents exponential growth or exponential decay. Explain.

\(\displaystyle{y}={\left(\frac{{1}}{{2}}\right)}{\left({1.01}\right)}^{{x}}\)

\(\displaystyle{y}={\left(\frac{{1}}{{2}}\right)}{\left({1.01}\right)}^{{x}}\)

asked 2021-05-05

Tell whether the function represents exponential growth or exponential decay. Then graph the function.

\(\displaystyle{y}={3}{e}^{{-{0.75}{x}}}\)

\(\displaystyle{y}={3}{e}^{{-{0.75}{x}}}\)

asked 2021-06-09

Tell whether the function represents exponential growth or exponential decay. Then graph the function.

\(\displaystyle{f{{\left({x}\right)}}}={\left({0.25}\right)}^{{x}}\)

\(\displaystyle{f{{\left({x}\right)}}}={\left({0.25}\right)}^{{x}}\)

asked 2021-06-23

Determine whether the function represents exponential growth or exponential decay. Identify the percent rate of change. \(\displaystyle{y}={0.99}^{{t}}\)

asked 2021-06-19

asked 2021-05-25

Identify each function as exponential growth or decay, and find the growth or decay factor. y=0,1*2^x

asked 2021-06-11

Tell whether the function represents exponential growth or exponential decay. Then graph the function.

\(\displaystyle{y}={3}{e}^{{{2}{x}}}\)

\(\displaystyle{y}={3}{e}^{{{2}{x}}}\)