The given function is: \(\displaystyle{k}{\left({x}\right)}={22}{\left({0.15}\right)}^{{x}}\)

Is in the form: \(y=a(b)^x\)

Since b=0.15<1

Then the function represents exponential decay.

Question

asked 2021-06-08

Tell whether the function represents exponential growth or exponential decay. Identify the growth or decay factor.

\(\displaystyle{f{{\left({x}\right)}}}={7}\cdot{0.32}^{{x}}\)

\(\displaystyle{f{{\left({x}\right)}}}={7}\cdot{0.32}^{{x}}\)

asked 2021-05-09

Tell whether the function represents exponential growth or exponential decay. \(\displaystyle{f{{\left({x}\right)}}}=\frac{{3}}{{5}}{\left(\frac{{5}}{{4}}\right)}^{{x}}\)

asked 2021-06-15

Tell whether the function represents exponential growth or exponential decay. Then graph the function.

\(\displaystyle{y}={3}{e}^{{-{{x}}}}\)

\(\displaystyle{y}={3}{e}^{{-{{x}}}}\)

asked 2021-05-17

Tell whether the function represents exponential growth or exponential decay.

\(\displaystyle{f{{\left({x}\right)}}}=\frac{{2}}{{7}}\cdot{4}^{{x}}\)

\(\displaystyle{f{{\left({x}\right)}}}=\frac{{2}}{{7}}\cdot{4}^{{x}}\)