# The central processing unit (CPU) power in computers has increased significantly over the years. The CPU power in Macintosh computers has grown exponentially from 8 MHz in 1984 to 3400 MHz in 2013 (Source: Apple. The exponential function $M(t)=7.91477(1.26698)^t[math], where t is the number of years after 1984, an be used to estimate the CPU power in a Macintosh computer in a given year. Find the CPU power of a Macintosh Performa 5320CD in 1995 and of an iMac G6 in 2009. Round to the nearest one MHz. # The central processing unit (CPU) power in computers has increased significantly over the years. The CPU power in Macintosh computers has grown exponentially from 8 MHz in 1984 to 3400 MHz in 2013 (Source: Apple. The exponential function$M(t)=7.91477(1.26698)^t[math], where t is the number of years after 1984, an be used to estimate the CPU power in a Macintosh computer in a given year. Find the CPU power of a Macintosh Performa 5320CD in 1995 and of an iMac G6 in 2009. Round to the nearest one MHz.

Question
The central processing unit (CPU) power in computers has increased significantly over the years. The CPU power in Macintosh computers has grown exponentially from 8 MHz in 1984 to 3400 MHz in 2013 (Source: Apple. The exponential function $$\displaystyle\{M}{\left({t}\right)}={7.91477}{\left({1.26698}\right)}^{{t}}{\left[{m}{a}{t}{h}\right]}$$, where t is the number of years after 1984, an be used to estimate the CPU power in a Macintosh computer in a given year. Find the CPU power of a Macintosh Performa 5320CD in 1995 and of an iMac G6 in 2009. Round to the nearest one MHz.

2021-01-09

For Macintosh Perfoma 5320CD, substitute $$t=1995-1984=11$$,

$$M(11)=7.91477(1.26698)^{11}$$

Use a calculator: $$\displaystyle{M}{\left({11}\right)}\sim{106.88}\to$$107MHz

For iMac G6, substitute $$t=2009-1984=25$$,

$$\displaystyle{M}{\left({25}\right)}={7.91477}{\left({1.26698}\right)}^{{25}}$$

Use a calculator: $$\displaystyle{M}{\left({25}\right)}\sim{2935.50}\to$$ 2936MHz

### Relevant Questions

The unstable nucleus uranium-236 can be regarded as auniformly charged sphere of charge Q=+92e and radius $$\displaystyle{R}={7.4}\times{10}^{{-{15}}}$$ m. In nuclear fission, this can divide into twosmaller nuclei, each of 1/2 the charge and 1/2 the voume of theoriginal uranium-236 nucleus. This is one of the reactionsthat occurred n the nuclear weapon that exploded over Hiroshima, Japan in August 1945.
A. Find the radii of the two "daughter" nuclei of charge+46e.
B. In a simple model for the fission process, immediatelyafter the uranium-236 nucleus has undergone fission the "daughter"nuclei are at rest and just touching. Calculate the kineticenergy that each of the "daughter" nuclei will have when they arevery far apart.
C. In this model the sum of the kinetic energies of the two"daughter" nuclei is the energy released by the fission of oneuranium-236 nucleus. Calculate the energy released by thefission of 10.0 kg of uranium-236. The atomic mass ofuranium-236 is 236 u, where 1 u = 1 atomic mass unit $$\displaystyle={1.66}\times{10}^{{-{27}}}$$ kg. Express your answer both in joules and in kilotonsof TNT (1 kiloton of TNT releases 4.18 x 10^12 J when itexplodes).
Write an exponential growth or decay function to model each situation. Then find the value of the function after the given amount of time. A new car is worth $25,000, and its value decreases by 15% each year; 6 years. asked 2021-02-25 We will now add support for register-memory ALU operations to the classic five-stage RISC pipeline. To offset this increase in complexity, all memory addressing will be restricted to register indirect (i.e., all addresses are simply a value held in a register; no offset or displacement may be added to the register value). For example, the register-memory instruction add x4, x5, (x1) means add the contents of register x5 to the contents of the memory location with address equal to the value in register x1 and put the sum in register x4. Register-register ALU operations are unchanged. The following items apply to the integer RISC pipeline: a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing. b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path. c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard. d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way. Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture. asked 2021-05-09 The dominant form of drag experienced by vehicles (bikes, cars,planes, etc.) at operating speeds is called form drag. Itincreases quadratically with velocity (essentially because theamount of air you run into increase with v and so does the amount of force you must exert on each small volume of air). Thus $$\displaystyle{F}_{{{d}{r}{u}{g}}}={C}_{{d}}{A}{v}^{{2}}$$ where A is the cross-sectional area of the vehicle and $$\displaystyle{C}_{{d}}$$ is called the coefficient of drag. Part A: Consider a vehicle moving with constant velocity $$\displaystyle\vec{{{v}}}$$. Find the power dissipated by form drag. Express your answer in terms of $$\displaystyle{C}_{{d}},{A},$$ and speed v. Part B: A certain car has an engine that provides a maximum power $$\displaystyle{P}_{{0}}$$. Suppose that the maximum speed of thee car, $$\displaystyle{v}_{{0}}$$, is limited by a drag force proportional to the square of the speed (as in the previous part). The car engine is now modified, so that the new power $$\displaystyle{P}_{{1}}$$ is 10 percent greater than the original power ($$\displaystyle{P}_{{1}}={110}\%{P}_{{0}}$$). Assume the following: The top speed is limited by air drag. The magnitude of the force of air drag at these speeds is proportional to the square of the speed. By what percentage, $$\displaystyle{\frac{{{v}_{{1}}-{v}_{{0}}}}{{{v}_{{0}}}}}$$, is the top speed of the car increased? Express the percent increase in top speed numerically to two significant figures. asked 2021-05-19 For digits before decimals point, multiply each digit with the positive powers of ten where power is equal to the position of digit counted from left to right starting from 0. For digits after decimals point, multiply each digit with the negative powers of ten where power is equal to the position of digit counted from right to left starting from 1. 1) $$10^{0}=1$$ 2) $$10^{1}=10$$ 3) $$10^{2}=100$$ 4) $$10^{3}=1000$$ 5) $$10^{4}=10000$$ And so on... 6) $$10^{-1}=0.1$$ 7) $$10^{-2}=0.01$$ 8) $$10^{-3}=0.001$$ 9) $$10^{-4}=0.0001$$ asked 2021-04-17 Common salt, NaCl, has a density of 2.165 $$\displaystyle\frac{{g}}{{c}}{m}^{{3}}$$. The molecular weight of NaCl is 58.44. Estimate the distance between nearest neighbor Na and Cl ions. (Hint: each ion can be considered to have one cube or cell of side s (our unknown) extending out from it) asked 2021-03-07 This problem is about the equation dP/dt = kP-H , P(0) = Po, where k > 0 and H > 0 are constants. If H = 0, you have dP/dt = kP , which models expontialgrowth. Think of H as a harvesting term, tending to reducethe rate of growth; then there ought to be a value of H big enoughto prevent exponential growth. Problem: find acondition on H, involving $$\displaystyle{P}_{{0}}$$ and k, that will prevent solutions from growing exponentially. asked 2020-11-08 Often new technology spreads exponentially. Between 1995 and 2005, each year the number of Internet domain hosts was 1.43 times the number of hosts in the preceding year. In 1995, the number of hosts was 8.2 million. (a) Explain why the number of hosts is an exponential function of time. The number of hosts grows by a factor of -----? each year, this is an exponential function because the number is growing by ------? decreasing constant increasing multiples. (b) Find a formula for the exponential function that gives the number N of hosts, in millions, as a function of the time t in years since 1995. (c) According to this model, in what year did the number of hosts reach 49 million? asked 2021-05-26 You open a bank account to save for college and deposit$400 in the account. Each year, the balance in your account will increase $$5\%$$. a. Write a function that models your annual balance. b. What will be the total amount in your account after 7 yr? Use the exponential function and extend the table to answer part b.
The bulk density of soil is defined as the mass of dry solidsper unit bulk volume. A high bulk density implies a compact soilwith few pores. Bulk density is an important factor in influencing root development, seedling emergence, and aeration. Let X denotethe bulk density of Pima clay loam. Studies show that X is normally distributed with $$\displaystyle\mu={1.5}$$ and $$\displaystyle\sigma={0.2}\frac{{g}}{{c}}{m}^{{3}}$$.
(b) Find the probability that arandomly selected sample of Pima clay loam will have bulk densityless than $$\displaystyle{0.9}\frac{{g}}{{c}}{m}^{{3}}$$.
(c) Would you be surprised if a randomly selected sample of this type of soil has a bulkdensity in excess of $$\displaystyle{2.0}\frac{{g}}{{c}}{m}^{{3}}$$? Explain, based on theprobability of this occurring.