Recall that,

\(\displaystyle{c}{s}\otimes={\sin{{\left({90}^{\circ}-{x}\right)}}},\)

\(\displaystyle{\sin{{x}}}={\cos{{\left({90}^{\circ}-{x}\right)}}},\)

\(\displaystyle{\cot{{x}}}={\tan{{\left({90}^{\circ}-{x}\right)}}},\)

\(\displaystyle{\tan{{x}}}={\cot{{\left({90}^{\circ}-{x}\right)}}},\)

Therefore,

\(\displaystyle{{\sin{{8}}}^{\circ}=}{{\cos{{82}}}^{\circ}}\)

\(\displaystyle{{\sin{{8}}}^{\circ}=}{q}\)

\(\displaystyle{{\cos{{8}}}^{\circ}=}{{\sin{{82}}}^{\circ}}\)

\(\displaystyle{{\cos{{8}}}^{\circ}=}{p}\)

\(\displaystyle{{\cot{{8}}}^{\circ}=}{{\tan{{82}}}^{\circ}}\)

\(\displaystyle{c}{\quad\text{or}\quad}{8}^{\circ}={r}\)

\(\displaystyle{{\csc{{8}}}^{\circ}=}\frac{{1}}{{{\sin{{8}}}^{\circ}}}\)

\(\displaystyle{{\csc{{8}}}^{\circ}=}\frac{{1}}{{q}}\)

\(\displaystyle{{\sec{{8}}}^{\circ}=}\frac{{1}}{{{\cos{{8}}}^{\circ}}}\)

\(\displaystyle{{\sec{{8}}}^{\circ}=}\frac{{1}}{{p}}\)

\(\displaystyle{{\tan{{8}}}^{\circ}=}\frac{{1}}{{{\cot{{8}}}^{\circ}}}\)

\(\displaystyle{{\tan{{8}}}^{\circ}=}\frac{{1}}{{r}}\)

\(\displaystyle{c}{s}\otimes={\sin{{\left({90}^{\circ}-{x}\right)}}},\)

\(\displaystyle{\sin{{x}}}={\cos{{\left({90}^{\circ}-{x}\right)}}},\)

\(\displaystyle{\cot{{x}}}={\tan{{\left({90}^{\circ}-{x}\right)}}},\)

\(\displaystyle{\tan{{x}}}={\cot{{\left({90}^{\circ}-{x}\right)}}},\)

Therefore,

\(\displaystyle{{\sin{{8}}}^{\circ}=}{{\cos{{82}}}^{\circ}}\)

\(\displaystyle{{\sin{{8}}}^{\circ}=}{q}\)

\(\displaystyle{{\cos{{8}}}^{\circ}=}{{\sin{{82}}}^{\circ}}\)

\(\displaystyle{{\cos{{8}}}^{\circ}=}{p}\)

\(\displaystyle{{\cot{{8}}}^{\circ}=}{{\tan{{82}}}^{\circ}}\)

\(\displaystyle{c}{\quad\text{or}\quad}{8}^{\circ}={r}\)

\(\displaystyle{{\csc{{8}}}^{\circ}=}\frac{{1}}{{{\sin{{8}}}^{\circ}}}\)

\(\displaystyle{{\csc{{8}}}^{\circ}=}\frac{{1}}{{q}}\)

\(\displaystyle{{\sec{{8}}}^{\circ}=}\frac{{1}}{{{\cos{{8}}}^{\circ}}}\)

\(\displaystyle{{\sec{{8}}}^{\circ}=}\frac{{1}}{{p}}\)

\(\displaystyle{{\tan{{8}}}^{\circ}=}\frac{{1}}{{{\cot{{8}}}^{\circ}}}\)

\(\displaystyle{{\tan{{8}}}^{\circ}=}\frac{{1}}{{r}}\)