# List all of the elements of {I, J, K}xx{Q, R}.

Question
Data distributions
List all of the elements of $$\displaystyle{\left\lbrace{I},{J},{K}\right\rbrace}\times{\left\lbrace{Q},{R}\right\rbrace}.$$

2021-02-26
$$\displaystyle{\left\lbrace{I},{J},{K}\right\rbrace}\times{\left\lbrace{Q},{R}\right\rbrace}={\left\lbrace{\left({I},{Q}\right)},{\left({I},{R}\right)},{\left({J},{Q}\right)},{\left({J},{R}\right)},{\left({K},{Q}\right)},{\left({K},{R}\right)}\right\rbrace}$$

### Relevant Questions

P({1, 2, 5, 9})
|S|=3
List all of the elements that conatain 3 elements.

When a gas is taken from a to c along the curved path in the figure (Figure 1) , the work done by the gas is W = -40 J and the heat added to the gas is Q = -140 J . Along path abc, the work done by the gas is W = -50 J . (That is, 50 J of work is done on the gas.)
I keep on missing Part D. The answer for part D is not -150,150,-155,108,105( was close but it said not quite check calculations)
Part A
What is Q for path abc?
Express your answer to two significant figures and include the appropriate units.
Part B
f Pc=1/2Pb, what is W for path cda?
Express your answer to two significant figures and include the appropriate units.
Part C
What is Q for path cda?
Express your answer to two significant figures and include the appropriate units.
Part D
What is Ua?Uc?
Express your answer to two significant figures and include the appropriate units.
Part E
If Ud?Uc=42J, what is Q for path da?
Express your answer to two significant figures and include the appropriate units.
The unstable nucleus uranium-236 can be regarded as auniformly charged sphere of charge Q=+92e and radius $$\displaystyle{R}={7.4}\times{10}^{{-{15}}}$$ m. In nuclear fission, this can divide into twosmaller nuclei, each of 1/2 the charge and 1/2 the voume of theoriginal uranium-236 nucleus. This is one of the reactionsthat occurred n the nuclear weapon that exploded over Hiroshima, Japan in August 1945.
A. Find the radii of the two "daughter" nuclei of charge+46e.
B. In a simple model for the fission process, immediatelyafter the uranium-236 nucleus has undergone fission the "daughter"nuclei are at rest and just touching. Calculate the kineticenergy that each of the "daughter" nuclei will have when they arevery far apart.
C. In this model the sum of the kinetic energies of the two"daughter" nuclei is the energy released by the fission of oneuranium-236 nucleus. Calculate the energy released by thefission of 10.0 kg of uranium-236. The atomic mass ofuranium-236 is 236 u, where 1 u = 1 atomic mass unit $$\displaystyle={1.66}\times{10}^{{-{27}}}$$ kg. Express your answer both in joules and in kilotonsof TNT (1 kiloton of TNT releases 4.18 x 10^12 J when itexplodes).
We will now add support for register-memory ALU operations to the classic five-stage RISC pipeline. To offset this increase in complexity, all memory addressing will be restricted to register indirect (i.e., all addresses are simply a value held in a register; no offset or displacement may be added to the register value). For example, the register-memory instruction add x4, x5, (x1) means add the contents of register x5 to the contents of the memory location with address equal to the value in register x1 and put the sum in register x4. Register-register ALU operations are unchanged. The following items apply to the integer RISC pipeline:
a. List a rearranged order of the five traditional stages of the RISC pipeline that will support register-memory operations implemented exclusively by register indirect addressing.
b. Describe what new forwarding paths are needed for the rearranged pipeline by stating the source, destination, and information transferred on each needed new path.
c. For the reordered stages of the RISC pipeline, what new data hazards are created by this addressing mode? Give an instruction sequence illustrating each new hazard.
d. List all of the ways that the RISC pipeline with register-memory ALU operations can have a different instruction count for a given program than the original RISC pipeline. Give a pair of specific instruction sequences, one for the original pipeline and one for the rearranged pipeline, to illustrate each way.
Hint for (d): Give a pair of instruction sequences where the RISC pipeline has “more” instructions than the reg-mem architecture. Also give a pair of instruction sequences where the RISC pipeline has “fewer” instructions than the reg-mem architecture.
We have a set of n-elements (A), and a set of m-elements (B).
$$\displaystyle{n}\ge{0}$$
$$\displaystyle{m}\ge{0}$$
Find how many relations there're from A to B.
What do the mean deviation, variance and standard deviation all have in common? How is this common factor (s) helpful with the calculations of the mean deviation, variance and standard deviation?
If we add a constant (say, d) for all data values, how this will affect the geometric mean? Give an example.
A 0.30 kg ladle sliding on a horizontal frictionless surface isattached to one end of a horizontal spring (k = 500 N/m) whoseother end is fixed. The ladle has a kinetic energy of 10 J as itpasses through its equilibrium position (the point at which thespring force is zero).
(a) At what rate is the spring doing work on the ladle as the ladlepasses through its equilibrium position?
(b) At what rate is the spring doing work on the ladle when thespring is compressed 0.10 m and the ladle is moving away from theequilibrium position?
Two oppositely charged but otherwise identical conducting plates of area 2.50 square centimeters are separated by a dielectric 1.80 millimeters thick, with a dielectric constant of K=3.60. The resultant electric field in the dielectric is $$\displaystyle{1.20}\times{10}^{{6}}$$ volts per meter.
Compute the magnitude of the charge per unit area $$\displaystyle\sigma$$ on the conducting plate.
$$\displaystyle\sigma={\frac{{{c}}}{{{m}^{{2}}}}}$$
Compute the magnitude of the charge per unit area $$\displaystyle\sigma_{{1}}$$ on the surfaces of the dielectric.
$$\displaystyle\sigma_{{1}}={\frac{{{c}}}{{{m}^{{2}}}}}$$
Find all zeros of p(x), real or imaginary. $$p(x) = x^{4} + 6x^{3} + 6x^{2} -18x -27$$ List all of the possible rational zeros according to the rational zero theorem and state the values for C, A, B and D in the following partial factorization of $$p(x) = (x-c)(x^{3}+Ax^{2}+Bx+D)$$ State the exact answer and a decimal approximation of each zero to the tenths place