Question

mu=50, sigma=10 Is the range be approximately 60 if it's normal distribution?

Data distributions
ANSWERED
asked 2020-12-24
\(\displaystyle\mu={50},\sigma={10}\)
Is the range be approximately 60 if it's normal distribution?

Answers (1)

2020-12-25
It is, sice most of the values are within \(\displaystyle{3}\sigma\) of \(\displaystyle\mu\).
Since this consists of \(\displaystyle{3}\sigma\) below and \(\displaystyle{3}\sigma\) above \(\displaystyle\mu\), the data values are expected to fall in the range of \(\displaystyle{3}\sigma+{3}\sigma={6}\sigma\).
\(\displaystyle\sigma={10}\)
\(\displaystyle{6}\sigma={6}\times{10}={60}\)
The normal distribution is approximately 60.
0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours

Relevant Questions

asked 2021-08-04

This exercise requires the use of a graphing calculator or computer programmed to do numerical integration. The normal distribution curve, which models the distributions of data in a wide range of applications, is given by the function
\(\displaystyle{p}{\left({x}\right)}={\frac{{{1}}}{{\sqrt{{{2}\pi^{\sigma}}}}}}{e}-\frac{{\left({x}-\mu\right)}^{{2}}}{{{2}\sigma^{{2}}}}\)
where \(\pi\) = 3,14159265 ... and \(\sigma\) and \(\mu\) are constants called the standard deviation and the mean, respectively. Its graph (for \(\sigma=1\) and \(\mu=2)\) is shown in the figure.
With \(\displaystyle\sigma={\color{red}{{5}}}\) and \(\mu=0\), approximate \(\displaystyle{\int_{{{0}}}^{{+\infty}}}{p}{\left({x}\right)}{\left.{d}{x}\right.}\).(Round your answer to four decimal places.)

asked 2020-11-05

A population of values has a normal distribution with \(\displaystyle\mu={129.7}\) and \(\displaystyle\sigma={7.7}\). You intend to draw a random sample of size \(\displaystyle{n}={10}\).
Find the probability that a single randomly selected value is less than 130.9.
\(\displaystyle{P}{\left({X}{<}{130.9}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.

asked 2021-02-13

A population of values has a normal distribution with \(\displaystyle\mu={192.6}\) and \(\displaystyle\sigma={34.4}\). You intend to draw a random sample of size \(\displaystyle{n}={173}\).
Find the probability that a single randomly selected value is less than 186.1.
\(\displaystyle{P}{\left({X}{<}{186.1}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.

asked 2021-02-19

A population of values has a normal distribution with \(\displaystyle\mu={216.9}\) and \(\displaystyle\sigma={87.1}\). You intend to draw a random sample of size \(\displaystyle{n}={97}\).
Find the probability that a single randomly selected value is between 193 and 244.3.
\(\displaystyle{P}{\left({193}{<}{X}{<}{244.3}\right)}=\)?
Write your answers as numbers accurate to 4 decimal places.

...