This exercise requires the use of a graphing calculator or computer programmed to do numerical integration. The normal distribution curve, which models the distributions of data in a wide range of applications, is given by the function

\(\displaystyle{p}{\left({x}\right)}={\frac{{{1}}}{{\sqrt{{{2}\pi^{\sigma}}}}}}{e}-\frac{{\left({x}-\mu\right)}^{{2}}}{{{2}\sigma^{{2}}}}\)

where \(\pi\) = 3,14159265 ... and \(\sigma\) and \(\mu\) are constants called the standard deviation and the mean, respectively. Its graph (for \(\sigma=1\) and \(\mu=2)\) is shown in the figure.

With \(\displaystyle\sigma={\color{red}{{5}}}\) and \(\mu=0\), approximate \(\displaystyle{\int_{{{0}}}^{{+\infty}}}{p}{\left({x}\right)}{\left.{d}{x}\right.}\).(Round your answer to four decimal places.)