Question

Solve the equation: 9^x-3^(x+1)+1=0

Complex numbers
ANSWERED
asked 2020-11-06
Solve the equation:
\(\displaystyle{9}^{{x}}-{3}^{{{x}+{1}}}+{1}={0}\)

Answers (1)

2020-11-07
Given:
\(\displaystyle{9}^{{x}}-{3}^{{{x}+{1}}}+{1}={0}\)
\(\displaystyle{3}^{{{2}{x}}}-{3}^{{{x}}}\times{3}+{1}={0}\)
Let \(\displaystyle{3}^{{x}}\) be u:
\(\displaystyle{u}^{{2}}-{u}\times{3}+{1}={0}\)
\(\displaystyle{u}=\frac{{{3}+\sqrt{{5}}}}{{2}},{u}=\frac{{{3}-\sqrt{{5}}}}{{2}}\)
Substitute back \(\displaystyle{3}^{{x}}\):
\(\displaystyle{3}^{{x}}=\frac{{{3}+\sqrt{{5}}}}{{2}}\)
\(\displaystyle{\ln{{\left({3}^{{x}}\right)}}}={\ln{{\left(\frac{{{3}+\sqrt{{5}}}}{{2}}\right)}}}\)
\(\displaystyle{x}{\ln{{\left({3}\right)}}}={\ln{{\left(\frac{{{3}+\sqrt{{5}}}}{{2}}\right)}}}\)
\(\displaystyle{x}=\frac{{{\ln{{\left(\frac{{{3}+\sqrt{{5}}}}{{2}}\right)}}}}}{{{\ln{{\left({3}\right)}}}}}\)
Solve \(\displaystyle{3}^{{x}}=\frac{{{3}-\sqrt{{5}}}}{{2}}\) similarly:
\(\displaystyle{x}=\frac{{{\ln{{\left(\frac{{{3}-\sqrt{{5}}}}{{2}}\right)}}}}}{{{\ln{{\left({3}\right)}}}}}\)
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-05-09
State any restrictions on the variable in the complex fraction. \(\displaystyle{\frac{{{\frac{{{x}-{4}}}{{{x}+{4}}}}}}{{{\frac{{{x}^{{{2}}}-{1}}}{{{x}}}}}}}\)
asked 2021-05-29
Complex number in rectangular form What is (1+2j) + (1+3j)? Your answer should contain three significant figures.
asked 2021-01-24
A bird flies in the xy-plane with a position vector given by \(\displaystyle\vec{{{r}}}={\left(\alpha{t}-\beta{t}^{{3}}\right)}\hat{{{i}}}+\gamma{t}^{{2}}\hat{{{j}}}\), with \(\displaystyle\alpha={2.4}\ \frac{{m}}{{s}},\beta={1.6}\ \frac{{m}}{{s}^{{3}}}\) and \(\displaystyle\gamma={4.0}\ \frac{{m}}{{s}^{{2}}}\). The positive y-direction is vertically upward. At the bird is at the origin.
Calculate the velocity vector of the bird as a function of time.
Calculate the acceleration vector of the bird as a function oftime.
What is the bird's altitude(y-coordinate) as it flies over x=0 for the first time after ?
asked 2021-05-26
The exponential equation and approximate the result, correct to 9 decimal places.
a) \(3^{(4x-1)}=11\)
b) \(6^{x+3}=3^{x}\)
To solve for x.
asked 2021-01-02

Solve linear equation and check: \(7x+3=6(x-1)+9\)

asked 2020-10-31
Which statement is correct?
\(\displaystyle\frac{{{3.56}\cdot{10}^{{2}}}}{{{1.09}\cdot{10}^{{4}}}}\le{\left({4.08}\cdot{10}^{{2}}\right)}{\left({1.95}\cdot{10}^{{-{{6}}}}\right)}\)
\(\displaystyle\frac{{{3.56}\cdot{10}^{{2}}}}{{{1.09}\cdot{10}^{{4}}}}{<}{\left({4.08}\cdot{10}^{{2}}\right)}{\left({1.95}\cdot{10}^{{-{{6}}}}\right)}\)
\(\displaystyle\frac{{{3.56}\cdot{10}^{{2}}}}{{{1.09}\cdot{10}^{{4}}}}{>}{\left({4.08}\cdot{10}^{{2}}\right)}{\left({1.95}\cdot{10}^{{-{{6}}}}\right)}\)
\(\displaystyle\frac{{{3.56}\cdot{10}^{{2}}}}{{{1.09}\cdot{10}^{{4}}}}={\left({4.08}\cdot{10}^{{2}}\right)}{\left({1.95}\cdot{10}^{{-{{6}}}}\right)}\)
asked 2021-02-12

Write the given matrix equation as a system of linear equations without matrices.
\(\displaystyle{\left[\begin{matrix}{2}&{0}&-{1}\\{0}&{3}&{0}\\{1}&{1}&{0}\end{matrix}\right]}{\left[\begin{matrix}{x}\\{y}\\{z}\end{matrix}\right]}={\left[\begin{matrix}{6}\\{9}\\{5}\end{matrix}\right]}\)

asked 2021-07-04
Solve the equation and inequalities.
\(\displaystyle{\left|{3}+{x}\right|}-{9}\leq{21}\)
asked 2020-10-19
Is the expression true:
\(\displaystyle\frac{{{\cos{{\left(-\theta\right)}}}}}{{{1}+{\sin{{\left(-\theta\right)}}}}}={\sec{\theta}}+{\tan{\theta}}\)
asked 2021-04-18
Solve the equation \(\displaystyle{\left({x}-{1}\right)}^{{{2}}}={9}\)
...