\(\displaystyle{P}={20.899}^{{{0.032}{t}}}\)

t=19

So

\(\displaystyle{P}={20.899}^{{{0.032}\times{19}}}\)

\(\displaystyle{P}={20.899}^{{0.608}}\)

\(\displaystyle{P}\approx{38.386}\)

t=19

So

\(\displaystyle{P}={20.899}^{{{0.032}\times{19}}}\)

\(\displaystyle{P}={20.899}^{{0.608}}\)

\(\displaystyle{P}\approx{38.386}\)