A triangle EFS, where EF is the base, is split into half with the line GH connecting to both legs. GH=20m FG=30m GS=24m HS=26m HE=32.5m EF=?

Question
Analytic geometry
A triangle EFS, where EF is the base, is split into half with the line GH connecting to both legs.
GH=20m
FG=30m
GS=24m
HS=26m
HE=32.5m
EF=?

2020-11-10
$$\displaystyle{S}\frac{{G}}{{S}}{F}=\frac{{24}}{{{24}+{30}}}=\frac{{24}}{{54}}=\frac{{4}}{{9}}$$
$$\displaystyle{S}\frac{{H}}{{S}}{E}=\frac{{26}}{{{26}+{32.5}}}=\frac{{26}}{{58.5}}=\frac{{4}}{{9}}$$
Since,
$$\displaystyle\triangle{G}{S}{H}{\quad\text{and}\quad}\triangle{F}{S}{E}$$ share $$\displaystyle\angle{S}$$, and $$\displaystyle{S}\frac{{G}}{{S}}{F}={S}\frac{{H}}{{S}}$$E, then $$\displaystyle\triangle{G}{S}{H}\sim\triangle{F}{S}{E}$$ by SAS. Thus:
$$\displaystyle{H}\frac{{G}}{{E}}{F}={S}\frac{{G}}{{S}}{F}$$
$$\displaystyle\frac{{20}}{{E}}{F}=\frac{{4}}{{9}}$$
$$\displaystyle{E}{F}=\frac{{{20}\times{9}}}{{4}}$$
EF=45m

Relevant Questions

Aidan knows that the observation deck on the Vancouver Lookout is 130 m above the ground. He measures the angle between the ground and his line of sight to the observation deck as $$\displaystyle{77}^{\circ}$$. How far is Aidan from the base of the Lookout to the nearest metre?
A 75.0-kg man steps off a platform 3.10 m above the ground. Hekeeps his legs straight as he falls, but at the moment his feettouch the ground his knees begin to bend, and, treated as aparticle, he moves an additional 0.60 m before coming torest.
a) what is the speed at the instant his feet touch theground?
b) treating him as a particle, what is his acceleration(magnitude and direction) as he slows down, if the acceleration isassumed to be constant?
c) draw his free-body diagram (see section 4.6). in termsof forces on the diagram, what is the net force on him? usenewton's laws and the results of part (b) to calculate the averageforce his feet exert on the ground while he slows down. expressthis force in newtons and also as a multiple of his weight.
The person weighs 170 lb. Each crutch makes an angle of 22.0 with the vertical. Half of the person's weight is supported by the cruches, the other half by the vertical forces exerted by the roundon his feet. Assuming that he is at rest and that the force exerted by the ground on the crutches acts along the crutches,determine
a) the smallest possible coefficient of friction between crutches and ground and
b) the magnitude of the compression force supported by each crutch.
The vertices of a tetrahedron correspond to four alternating corners of a cube. By using analytical geometry, demonstrate that the angle made by connecting two of the vertices to a point at the center of the cube is $$\displaystyle{109.5}^{\circ}$$, the characteristic angle for tetrahedral molecules.
The unstable nucleus uranium-236 can be regarded as auniformly charged sphere of charge Q=+92e and radius $$\displaystyle{R}={7.4}\times{10}^{{-{15}}}$$ m. In nuclear fission, this can divide into twosmaller nuclei, each of 1/2 the charge and 1/2 the voume of theoriginal uranium-236 nucleus. This is one of the reactionsthat occurred n the nuclear weapon that exploded over Hiroshima, Japan in August 1945.
A. Find the radii of the two "daughter" nuclei of charge+46e.
B. In a simple model for the fission process, immediatelyafter the uranium-236 nucleus has undergone fission the "daughter"nuclei are at rest and just touching. Calculate the kineticenergy that each of the "daughter" nuclei will have when they arevery far apart.
C. In this model the sum of the kinetic energies of the two"daughter" nuclei is the energy released by the fission of oneuranium-236 nucleus. Calculate the energy released by thefission of 10.0 kg of uranium-236. The atomic mass ofuranium-236 is 236 u, where 1 u = 1 atomic mass unit $$\displaystyle={1.66}\times{10}^{{-{27}}}$$ kg. Express your answer both in joules and in kilotonsof TNT (1 kiloton of TNT releases 4.18 x 10^12 J when itexplodes).
A dead battery is charged by connecting it to the live battery ofanother car with jumper cables. Assume that V=9.5 V and R=0.90 Ohms.
Determine the current in the starter.
Determine the current in the dead battery.
How do you solve this problem? I don' t even know whereto begin.
A Ferrari with a mass of 1400 kg approaches a freeway underpassthat is 10 m across. At what speed must the car be moving, inorder for it to have a wavelength such that it might somehow"diffract" after passing through this "single slit"? How dothese conditions compare to normal freeway speeds of 30m/s?
A wagon with two boxes of Gold, having total mass 300 kg, is cutloose from the hoses by an outlaw when the wagon is at rest 50m upa 6.0 degree slope. The outlaw plans to have the wagon roll downthe slope and across the level ground, and then fall into thecanyon where his confederates wait. But in a tree 40m from thecanyon edge wait the Lone Ranger (mass 75.0kg) and Tonto (mass60.0kg). They drop vertically into the wagon as it passes beneaththem. a) if they require 5.0 s to grab the gold and jump out, willthey make it before the wagon goes over the edge? b) When the twoheroes drop into the wagon, is the kinetic energy of the system ofthe heroes plus the wagon conserved? If not, does it increase ordecrease and by how much?
The dominant form of drag experienced by vehicles (bikes, cars,planes, etc.) at operating speeds is called form drag. Itincreases quadratically with velocity (essentially because theamount of air you run into increase with v and so does the amount of force you must exert on each small volume of air). Thus
$$\displaystyle{F}_{{{d}{r}{u}{g}}}={C}_{{d}}{A}{v}^{{2}}$$
where A is the cross-sectional area of the vehicle and $$\displaystyle{C}_{{d}}$$ is called the coefficient of drag.
Part A:
Consider a vehicle moving with constant velocity $$\displaystyle\vec{{{v}}}$$. Find the power dissipated by form drag.
Express your answer in terms of $$\displaystyle{C}_{{d}},{A},$$ and speed v.
Part B:
A certain car has an engine that provides a maximum power $$\displaystyle{P}_{{0}}$$. Suppose that the maximum speed of thee car, $$\displaystyle{v}_{{0}}$$, is limited by a drag force proportional to the square of the speed (as in the previous part). The car engine is now modified, so that the new power $$\displaystyle{P}_{{1}}$$ is 10 percent greater than the original power ($$\displaystyle{P}_{{1}}={110}\%{P}_{{0}}$$).
Assume the following:
The top speed is limited by air drag.
The magnitude of the force of air drag at these speeds is proportional to the square of the speed.
By what percentage, $$\displaystyle{\frac{{{v}_{{1}}-{v}_{{0}}}}{{{v}_{{0}}}}}$$, is the top speed of the car increased?
Express the percent increase in top speed numerically to two significant figures.
A helicopter carrying dr. evil takes off with a constant upward acceleration of $$\displaystyle{5.0}\ \frac{{m}}{{s}^{{2}}}$$. Secret agent austin powers jumps on just as the helicopter lifts off the ground. Afterthe two men struggle for 10.0 s, powers shuts off the engineand steps out of the helicopter. Assume that the helicopter is infree fall after its engine is shut off and ignore effects of airresistance.