Anonym
2020-10-18
Answered

Determine the exact value of expression.

$\mathrm{sec}\left(210\right)\times \mathrm{cot}\left(300\right)+\mathrm{sin}\left(225\right)$

You can still ask an expert for help

comentezq

Answered 2020-10-19
Author has **106** answers

Given,

$\mathrm{sec}\left(210\right)\times \mathrm{cot}\left(300\right)+\mathrm{sin}\left(225\right)$

Now,

$\mathrm{sec}\left(210\right)\times \mathrm{cot}\left(300\right)+\mathrm{sin}\left(225\right)$

$=\mathrm{sec}(180+30)\times \mathrm{cot}(360-60)+\mathrm{sin}(180+45)$

$=-\mathrm{sec}\left(30\right)\times (-\mathrm{cot}\left(60\right))+(-\mathrm{sin}\left(45\right))$

$=-\left(\frac{2}{\sqrt{3}}\right)\times (-\frac{1}{\sqrt{3}})+\left(\frac{1}{\sqrt{2}}\right)$

$=\frac{2}{3}-\frac{1}{\sqrt{2}}$

$=\frac{2\sqrt{2}+3}{3\sqrt{2}}$

Now,

Jeffrey Jordon

Answered 2022-01-31
Author has **2027** answers

Answer is given below (on video)

asked 2021-08-20

Let P(x, y) be the terminal point on the unit circle determined by t. Then

asked 2022-01-24

Show ${\int}_{0}^{2\pi}{\mathrm{cos}}^{2}tdt=\pi$ using Pythagorean Theorem

The traditional way I always see this integral calculated is with the identity

$\mathrm{cos}}^{2}t=\frac{1+\mathrm{cos}\left(2t\right)}{2$

My alternative method uses${\mathrm{cos}}^{2}t+{\mathrm{sin}}^{2}t=1$ . Its

The traditional way I always see this integral calculated is with the identity

My alternative method uses

asked 2022-03-30

Prove the inequalities

$1-\frac{{x}^{2}}{2}\le \mathrm{cos}\left(x\right)\le 1-\frac{{x}^{2}}{2}+\frac{{x}^{4}}{24}$

asked 2022-04-29

asked 2021-08-21

Find

asked 2022-04-21

Solve

$\mathrm{sin}x+\mathrm{cos}x+\mathrm{tan}x+\mathrm{csc}x+\mathrm{sec}x+\mathrm{cot}x=-2$

from$0<x<2\pi$

from

asked 2022-03-23

Solve the equation

$4{y}^{2}-20x-25=0$