Question

Simplifying Expressions Involving Radicals Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.NKSsqrt{x^{5}}x5

Rational exponents and radicals
ANSWERED
asked 2021-01-16

Simplifying Expressions Involving Radicals Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.  \(\displaystyle\sqrt{{{x}^{{{5}}}}}{x}^{5}\)

Answers (1)

2021-01-17

Step 1
"For any rational exponent \(\displaystyle\frac{{m}}{{n}}\ \frac{{m}}{{n}}\) in lowest terms, where mm and nn are integers and \(\displaystyle{n}{>}{0},\ {n}{>}{0}\) we define \(\displaystyle{a}^{{\frac{{m}}{{n}}}}={\left(\sqrt{{{n}}}{\left\lbrace{a}\right\rbrace}\right)}^{{{m}}}=\sqrt{{{n}}}{\left\lbrace{a}^{{{m}}}\right\rbrace}{a}\frac{{m}}{{n}}{\left({a}{n}\right)}{m}={a}{m}{n}\)
If nn is even, then we require that \(\displaystyle{a}\geq{0}{a}\geq{0}\)"
Step 2
\(\displaystyle\sqrt{{{x}^{{{5}}}}}{x}{5}\)
Consider the given expression,
\(\displaystyle\sqrt{{{x}^{{{5}}}}}{x}{5}={\left({x}^{{{5}}}\right)}^{{\frac{{1}}{{2}}}}{\left({x}{5}\right)}\frac{{1}}{{2}}\)
Apply Law of exponents \(\displaystyle{a}^{{\frac{{m}}{{n}}}}={\left(\sqrt{{{n}}}{\left\lbrace{a}\right\rbrace}\right)}^{{{m}}}=\sqrt{{{n}}}{\left\lbrace{a}^{{{m}}}\right\rbrace}{a}\frac{{m}}{{n}}={\left({a}{n}\right)}{m}={a}{m}{n}\) we get,
\(\displaystyle{\left({x}^{{{5}}}\right)}^{{\frac{{1}}{{2}}}}={x}^{{{\frac{{{5}}}{{{2}}}}}}{\left({x}^{5}\right)}\frac{{1}}{{2}}={x}^{52}\)
Therefore the expression \(\displaystyle\sqrt{{{x}^{{{5}}}}}{x}{5}\) simplifies to \(\displaystyle{x}^{{{\frac{{{5}}}{{{2}}}}}}{x}^{52}\)

0
 
Best answer

expert advice

Have a similar question?
We can deal with it in 3 hours
...