Simplifying Expressions Involving Radicals Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers. NKS sqrt{x^{5}}x5

Simplifying Expressions Involving Radicals Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers. NKS sqrt{x^{5}}x5

Question
Simplifying Expressions Involving Radicals Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers. NKS \(\displaystyle\sqrt{{{x}^{{{5}}}}}{x}{5}\)

Answers (1)

2021-01-17
Step 1
"For any rational exponent \(\displaystyle\frac{{m}}{{n}}\ \frac{{m}}{{n}}\) in lowest terms, where mm and nn are integers and \(\displaystyle{n}{>}{0},\ {n}{>}{0}\) we define NKS \(\displaystyle{a}^{{\frac{{m}}{{n}}}}={\left(\sqrt{{{n}}}{\left\lbrace{a}\right\rbrace}\right)}^{{{m}}}=\sqrt{{{n}}}{\left\lbrace{a}^{{{m}}}\right\rbrace}{a}\frac{{m}}{{n}}{\left({a}{n}\right)}{m}={a}{m}{n}\)
If nn is even, then we require that \(\displaystyle{a}\geq{0}{a}\geq{0}\)"
Step 2
\(\displaystyle\sqrt{{{x}^{{{5}}}}}{x}{5}\)
Consider the given expression,
\(\displaystyle\sqrt{{{x}^{{{5}}}}}{x}{5}={\left({x}^{{{5}}}\right)}^{{\frac{{1}}{{2}}}}{\left({x}{5}\right)}\frac{{1}}{{2}}\)
Apply Law of exponents \(\displaystyle{a}^{{\frac{{m}}{{n}}}}={\left(\sqrt{{{n}}}{\left\lbrace{a}\right\rbrace}\right)}^{{{m}}}=\sqrt{{{n}}}{\left\lbrace{a}^{{{m}}}\right\rbrace}{a}\frac{{m}}{{n}}={\left({a}{n}\right)}{m}={a}{m}{n}\) we get,
\(\displaystyle{\left({x}^{{{5}}}\right)}^{{\frac{{1}}{{2}}}}={x}^{{{\frac{{{5}}}{{{2}}}}}}{\left({x}{5}\right)}\frac{{1}}{{2}}={x}{52}\)
Therefore the expression \(\displaystyle\sqrt{{{x}^{{{5}}}}}{x}{5}\) simplifies to \(\displaystyle{x}^{{{\frac{{{5}}}{{{2}}}}}}{x}{52}\)
0

Relevant Questions

asked 2020-12-30
Simplifying Expressions Involving Radicals Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.
\(\displaystyle{\frac{{\sqrt{{{4}}}{\left\lbrace{x}^{{{7}}}\right\rbrace}}}{{\sqrt{{{4}}}{\left\lbrace{x}^{{{3}}}\right\rbrace}}}}\)
asked 2021-03-05
Simplifying Expressions Involving Radicals Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.
\(\displaystyle{\frac{{\sqrt{{{3}}}{\left\lbrace{8}{x}^{{{2}}}\right\rbrace}}}{{\sqrt{{{x}}}}}}\)
asked 2021-02-12
Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.
\(\frac{\sqrt[3]{8x^{2}}}{\sqrt{x}}\)
asked 2021-02-06
Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers. \(\sqrt{x^{5}}\)
asked 2021-02-22
Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.
a) \(r^{^1/_6}\ r^{^5/_6}\)
b) \(a^{^3/_5}\ a^{^3/_{10}}\)
asked 2020-11-26
Simplify the expression and express the answer using rational exponents. Assume that all letters denote positive numbers.
\(\displaystyle\sqrt{{{x}^{3}}}\)
asked 2020-12-01
Radical simplify the expression, and eliminate any negative exponents(s). Assume that all letters denote positive numbers.
a) \(\displaystyle\sqrt{{{6}}}{\left\lbrace{y}^{{{5}}}\right\rbrace}\sqrt{{{3}}}{\left\lbrace{y}^{{{2}}}\right\rbrace}\)
b) \(\displaystyle{\left({5}\sqrt{{{3}}}{\left\lbrace{x}\right\rbrace}\right)}{\left({2}\sqrt{{{4}}}{\left\lbrace{x}\right\rbrace}\right)}\)
asked 2021-02-08
Combining radicals simplify the expression. Assume that all letters denote positive numbers.
\(\displaystyle\sqrt{{{16}{x}}}+\sqrt{{{x}^{5}}}\)
asked 2021-02-05
The given expression using rational exponents. Then simplify and convert back to radical notation. Assume that all variables represent positive real numbers.
Given:
The expression is \(\displaystyle\sqrt{{{81}{a}^{12}{b}^{20}}}\)
asked 2021-01-02
Simplify the expression, answering with rational exponents and not radicals. To enter \(\displaystyle{x}^{{\frac{{m}}{{n}}}},\) type \(\displaystyle{x}^{{{\left(\frac{{m}}{{n}}\right)}}}.\)
\(\displaystyle\sqrt{{{3}}}{\left\lbrace{27}{m}^{{{2}}}\right\rbrace}=?\)
...