Cramer’s Rule to solve (if possible) the system of linear equations. frac{5}{6}x_1-x_2=-20 frac{3}{4}x_1-frac{7}{2}x_2=-51

Question
Forms of linear equations
Cramer’s Rule to solve (if possible) the system of linear equations.
$$\displaystyle{\frac{{{5}}}{{{6}}}}{x}_{{1}}-{x}_{{2}}=-{20}$$
$$\displaystyle{\frac{{{3}}}{{{4}}}}{x}_{{1}}-{\frac{{{7}}}{{{2}}}}{x}_{{2}}=-{51}$$

2021-02-22
Cramers rule
The solution system $$\displaystyle{b}{e}{g}\in{\left\lbrace{c}{a}{s}{e}{s}\right\rbrace}{a}{x}+{b}{y}={s}\backslash{c}{x}+{\left.{d}{y}\right.}={t}{e}{n}{d}{\left\lbrace{c}{a}{s}{e}{s}\right\rbrace}$$ is given by
$$\displaystyle{x}={\frac{{{D}_{{x}}}}{{{D}}}},{y}={\frac{{{D}_{{y}}}}{{{D}}}}{w}{h}{e}{r}{e}{D}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{a}&{b}\backslash{c}&{d}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}$$
$$\displaystyle{D}_{{x}}{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{s}&{b}\backslash{t}&{d}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}$$
$$\displaystyle{A}{n}{d}{D}_{{y}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{a}&{s}\backslash{c}&{t}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{p}{r}{o}{v}{i}{d}{e}{d}{D}\ne{q}{0}$$
Consider the system of equations $$\displaystyle{b}{e}{g}\in{\left\lbrace{c}{a}{s}{e}{s}\right\rbrace}{\frac{{{5}}}{{{6}}}}{x}_{{1}}-{x}_{{2}}=-{20}---{\left({1}\right)}\backslash{\frac{{{4}}}{{{3}}}}{x}_{{1}}-{\frac{{{7}}}{{{2}}}}{x}_{{2}}=-{51}---{\left({2}\right)}{e}{n}{d}{\left\lbrace{c}{a}{s}{e}{s}\right\rbrace}$$
$$\displaystyle{D}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{\frac{{{5}}}{{{6}}}}&-{1}\backslash{\frac{{{4}}}{{{3}}}}&-{\frac{{{7}}}{{{2}}}}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}=-{\frac{{{19}}}{{{12}}}}$$
similarly
$$\displaystyle{D}_{{x}}={b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}-{20}&-{1}\backslash-{51}&-{\frac{{{7}}}{{{2}}}}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}$$
$$\displaystyle{b}{e}{g}\in{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}{\frac{{{5}}}{{{6}}}}&-{20}\backslash{\frac{{{4}}}{{{3}}}}&-{51}{e}{n}{d}{\left\lbrace{b}{m}{a}{t}{r}{i}{x}\right\rbrace}=-{\frac{{{95}}}{{{6}}}}$$
Note that $$\displaystyle{D}\ne{q}{0}$$
By the above formula
$$\displaystyle{x}{\frac{{{19}}}{{-\frac{{19}}{{12}}}}}$$
$$\displaystyle=-{12}$$
SIMILARLY
$$\displaystyle{y}={\frac{{{D}_{{y}}}}{{{D}}}}$$
$$\displaystyle{\frac{{-\frac{{95}}{{6}}}}{{-\frac{{19}}{{12}}}}}$$
=10
thus the solution of the system is x=-12 and y=10.This solution can be written as ordered pair (x,y)=(-12,10)

Relevant Questions

Cramer’s Rule to solve (if possible) the system of linear equations.
$$\displaystyle-{8}{x}_{{1}}+{7}{x}_{{2}}{\mid}-{10}{x}_{{3}}=-{151}$$
$$\displaystyle{12}{x}_{{1}}+{3}{x}_{{2}}-{5}{x}_{{3}}={86}$$
$$\displaystyle{15}{x}_{{1}}-{9}{x}_{{2}}+{2}{x}_{{3}}={187}$$
Use Cramer’s Rule to solve (if possible) the system of linear equations.
2x-y=-10
3x+2y=-1
A small grocer finds that the monthly sales y (in $) can be approximated as a function of the amount spent advertising on the radio $$x_1$$ (in$) and the amount spent advertising in the newspaper $$x_2$$ (in $) according to $$y=ax_1+bx_2+c$$ The table gives the amounts spent in advertising and the corresponding monthly sales for 3 months. $$\begin{array}{|c|c|c|}\hline \text { Advertising, } x_{1} & \text { Advertising, } x_{2} &\text{sales, y} \\ \hline 2400 & { 800} & { 36,000} \\ \hline 2000 & { 500} & { 30,000} \\ \hline 3000 & { 1000} & { 44,000} \\ \hline\end{array}$$ a) Use the data to write a system of linear equations to solve for a, b, and c. b) Use a graphing utility to find the reduced row-echelon form of the augmented matrix. c) Write the model $$y=ax_1+bx_2+c$$ d) Predict the monthly sales if the grocer spends$250 advertising on the radio and $500 advertising in the newspaper for a given month. asked 2021-03-05 Use cramer's rule to solve $$x_1+2x_2=5$$ $$-x_1+x_2=1$$ asked 2020-12-25 Use cramer's rule to solve system of linear equations 13x-6y=17 26x-12y=8 asked 2020-10-19 The purchase price of a home y (in$1000) can be approximated based on the annual income of the buyer $$x_1$$ (in $1000) and on the square footage of the home $$x_2 (\text{ in } 100ft^2)$$ according to $$y=ax_1+bx_2+c$$ The table gives the incomes of three buyers, the square footages of the home purchased, and the corresponding purchase prices of the home. a) Use the data to write a system of linear equations to solve for a, b, and c. b) Use a graphing utility to find the reduced row-echelon form of the augmented matrix. c) Write the model $$y=ax_1+bx_2+c$$ d) Predict the purchase price for a buyer who makes$100000 per year and wants a $$2500ft^2$$ home.
Given a linear system of equations below. The matrix equation of the linear system is given by: (see image)
Given a linear system of equations below.The matrix equation of the linear system is given by:Ax=b.The determinant of A is 8.Using Cramers's rule find the value for x.
x+3y+4z=3
2z+6y+9z=5
3x+y-2z=7
Determine if (1,3) is a solution to the given system of linear equations.
$$\displaystyle{5}{x}+{y}={8}$$
$$\displaystyle{x}+{2}{y}={5}$$
$$2x+3y=5$$
$$-y=-2+\frac{2}{3}x$$