Solve for G.S / P.S forbthe following differential equations using the method of solutions for linear equations of first order, first degree (y-x)(y+x)(y^{2}+x^{2})(xdy-ydx)=x^{6}dx

Question
Forms of linear equations
Solve for G.S / P.S forbthe following differential equations using the method of solutions for linear equations of first order, first degree
$$\displaystyle{\left({y}-{x}\right)}{\left({y}+{x}\right)}{\left({y}^{{{2}}}+{x}^{{{2}}}\right)}{\left({x}{\left.{d}{y}\right.}-{y}{\left.{d}{x}\right.}\right)}={x}^{{{6}}}{\left.{d}{x}\right.}$$

2021-01-23
$$\displaystyle{\left({y}-{x}\right)}{\left({y}+{x}\right)}{\left({y}^{{{2}}}+{x}^{{{2}}}\right)}{\left({x}{\left.{d}{y}\right.}-{y}{\left.{d}{x}\right.}\right)}={x}^{{{6}}}{\left.{d}{x}\right.}$$
$$\displaystyle\Rightarrow{\left({y}^{{{2}}}-{x}^{{{2}}}\right)}{\left({y}^{{{2}}}-{x}^{{{2}}}\right)}{\left({x}{\left.{d}{y}\right.}-{y}{\left.{d}{x}\right.}\right)}={x}^{{{6}}}{\left.{d}{x}\right.}$$
$$\displaystyle\Rightarrow{\left({y}^{{{4}}}-{x}^{{{4}}}\right)}{\left({x}{\left.{d}{y}\right.}-{y}{\left.{d}{x}\right.}\right)}={x}^{{{4}}}{\left.{d}{x}\right.}{\left[{\left({a}+{b}\right)}{\left({a}-{b}\right)}={a}^{{{2}}}-{b}^{{{2}}}\right]}$$
$$\displaystyle\Rightarrow{\frac{{{\left({y}^{{{4}}}-{x}^{{{4}}}\right\rbrace}{\left\lbrace{x}^{{{4}}}\right\rbrace}{\frac{{{x}{\left.{d}{y}\right.}-{y}{\left.{d}{x}\right.}}}{{{x}^{{{2}}}}}}={\left.{d}{x}\right.}}}{}}$$
$$\displaystyle{\left[{\left({\frac{{{y}}}{{{x}}}}\right)}^{{{4}}}-{1}\right]}{d}{\frac{{{y}}}{{{x}}}}={\left.{d}{x}\right.}$$
$$\displaystyle\int{\left[{\left({\frac{{{y}}}{{{x}}}}\right)}^{{{4}}}-{1}\right]}{d}{\frac{{{y}}}{{{x}}}}=\int{\left.{d}{x}\right.}+{e}{\left({e}={c}{o}{n}{s}{\tan{{t}}}\right)}$$
$$\displaystyle\Rightarrow{\frac{{{\left\lbrace{\frac{{{y}}}{{{x}}}}\right\rbrace}}}{^}}{\left\lbrace{4}+{1}\right\rbrace}{\left\lbrace{4}+{1}\right\rbrace}-{\frac{{{y}}}{{{x}}}}={x}+{e}$$
$$\displaystyle\Rightarrow{\frac{{{y}^{{{5}}}}}{{{5}{x}^{{{5}}}}}}-{\frac{{{y}}}{{{x}}}}={x}+{e}$$
$$\displaystyle\Rightarrow{y}^{{{5}}}-{5}{x}{6}{\left\lbrace{4}\right\rbrace}{y}={5}{x}^{{{5}}}{\left({x}+{e}\right)}$$
$$\displaystyle\Rightarrow{y}{\left({y}^{{{4}}}-{5}{x}^{{{4}}}\right)}={5}{x}^{{{5}}}{\left({x}+{e}\right)}$$
Therefore the sol is
$$\displaystyle{y}{\left({y}^{{{4}}}-{5}{x}^{{{4}}}\right)}={5}{x}^{{{5}}}{\left({x}+{e}\right)}$$

Relevant Questions

Recognize the equation and important characteristics of the different types of conic sections, illustrate systems of nonlinear equations, determine the solutions of system of equations (one linear and one second degree) in two variables using substitution, elimination, and graphing (in standard form), solve situational problems involving systems of non-linear equation
Write the following equation in standard form and sketch it's graph
1.$$9x^2+72x-64y^2+128y+80=0$$
2.$$y^2+56x-18y+417=0$$
3.$$x^2-10x-48y+265=0$$
4.$$x^2+4x+16y^2-128y+292=0$$
a. Polynomial regression equations are useful for modeling more complex curvature in regression equations than can be handled by using the method of transformations.
b. A polynomial regression equation can be estimated using the method of least squares, the same method used in multiple linear regression.
c. The term “linear” in “multiple linear regression” refers to using only first-degree terms in the predictor variables.
Linear equations of first order.
Solve the initial-value problem on the specified interval $$\displaystyle{y}'-{3}{y}={e}^{{{2}{x}}}{o}{n}{\left(-\infty,+\infty\right)},\ \text{with}\ {y}={0}\ \text{when}\ {x}={0}$$.
Linear equations of first order.
Solve the initial-value problem on the specified interval $${y}'+{y} \tan{{x}}= \sin{{2}}{x}{o}{n}{\left(-\frac{1}{{2}}\pi,\frac{1}{{2}}\pi\right)}\ \text{with}\ {y}={2}\ \text{when}\ {x}={0}$$.
Solve the unknowns of the linear equations using Matrix Inversion. Show the details of your work and box the final answers.
25W+15X+5Y-5Z=6
15W+10X+Y-8Z=1
5W+X+30Y+54Z=3
-5W-8X+54Y+276Z=-2
Given a linear system of equations below. The matrix equation of the linear system is given by: (see image)
Given a linear system of equations below.The matrix equation of the linear system is given by:Ax=b.The determinant of A is 8.Using Cramers's rule find the value for x.
x+3y+4z=3
2z+6y+9z=5
3x+y-2z=7
Solve the following linear and quadratic systems of equations:
y + 3x = -2 or 3x +2 = y
$$y = x^2$$
a. Show all work in solving your system of equations algebraically.
b. Graph your system of equations and show the solution graphically to verify your solution.
$$\displaystyle{\frac{{{5}}}{{{6}}}}{x}_{{1}}-{x}_{{2}}=-{20}$$
$$\displaystyle{\frac{{{3}}}{{{4}}}}{x}_{{1}}-{\frac{{{7}}}{{{2}}}}{x}_{{2}}=-{51}$$
$$\displaystyle{x}-{y}=-{2}{\left({1},{3}\right)}$$
$$\displaystyle{3}{x}-{y}=-{2}$$