To print his first novel, Shane can use a print-on-demand book printer or he can buy a printer. The book printer charges a setup fee of $150 plus $6 per copy of the book. The printer he would need costs $750, and it would cost $2 per copy to print the book. For how many copies are the costs the same?

Question
Linear equations and graphs
asked 2021-01-02
To print his first novel, Shane can use a print-on-demand book printer or he can buy a printer. The book printer charges a setup fee of $150 plus $6 per copy of the book. The printer he would need costs $750, and it would cost $2 per copy to print the book. For how many copies are the costs the same?

Answers (1)

2021-01-03
Let y be the total cost and x be the number of copies so that:
total cost=setup cost/printer cost+cost per copy×number of copies
For the print-on-demand book printer,
y=150+6x(1)
If Shane decides to buy a printer,
y=750+3x(2)
For the costs to be the same, equate (1) and (2):
150+6x=750+3x
Solve for x:
150+3x=750
3x=600
x=200
So, the costs are the same for 200 copies of the book.
0

Relevant Questions

asked 2021-01-17
Elleana is planning to join a DVD club and is investigating the options for membership. Option 1 is a $20 membership fee and $1.25 rental charge for each DVD rented. Option 2 has no rental fee and charges $2.50 for each DVD rented. How many DVDs would Elleanna have to rent in order for the total cost of Option 1 to be equal to Option 2?
asked 2021-01-27
A small drugstore orders copies of a certain magazine for it magazine rack each week. Let X=demand for the magazine, with pmf
\(\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{l}\right|}{l}{\mid}\right\rbrace}{h}{l}\in{e}{x}&{1}&{2}&{3}&{4}&{5}&{6}\backslash{h}{l}\in{e}{p}{\left({x}\right)}&{\frac{{{1}}}{{{15}}}}&{\frac{{{2}}}{{{15}}}}&{\frac{{{3}}}{{{15}}}}&{\frac{{{4}}}{{{15}}}}&{\frac{{{5}}}{{{15}}}}&{\frac{{{6}}}{{{15}}}}\backslash{h}{l}\in{e}{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}\)
Suppose the store owner actually pays $1.00 for each copy of the magazine and the price to customers is $2.00. If magazines left at the end of the week have no salvage value, is it better to order three or four copies of the magazine?
asked 2021-02-12
Manuel has $54 to buy CDs and books. Each CD costs $9, and each book costs $6. He wants to buy exactly 7 items to spend all of his money. Write a system of equations that could be solved to determine the number of CDs and the number of books Manuel buys.
asked 2021-01-02
A yoga studio charges a $36 membership fee and a $20.60 per month for 10 classes. A Martial Arts studio charges a $20 membership fee and $22.20 per month for 10 classes. Your friend belongs to the yoga studio the same month you belong to the Martial Arts studio. After how many months is your friend's total cost the same as your total cost?
asked 2021-01-15
Anthony is working for an engineering company that is building a Ferris wheel to be used at county fairs. He wants to create an algebraic model that describes the height of a rider on the wheel in terms of time. He knows that the diameter of the wheel will be 90 feet and that the axle will be built to stand 55 feet off the ground. He also knows they plan to set the wheel to make one rotation every 60 seconds. Write at least two equations that model the height of a rider in terms of t, seconds on the ride, assuming that when t = 0, the rider is at his or her lowest possible height. Explain why both equations are accurate.
Part 2:One of Anthony's co-workers says, "Sine and cosine are basically the same thing." Anthony is not so sure, and can see things either way. Provide one piece of evidence that would confirm the co-worker's point of view. Provide one piece of evidence that would refute it. Hint: It may be helpful to consider the domain and range of different functions, as well as the relationship of each of these functions to triangles in the unit circle
asked 2020-12-29
The presidential election is coming. Five survey companies (A, B, C, D, and E) are doing survey to forecast whether or not the Republican candidate will win the election. Each company randomly selects a sample size between 1000 and 1500 people. All of these five companies interview people over the phone during Tuesday and Wednesday. The interviewee will be asked if he or she is 18 years old or above and U.S. citizen who are registered to vote. If yes, the interviewee will be further asked: will you vote for the Republican candidate? On Thursday morning, these five companies announce their survey sample and results at the same time on the newspapers. The results show that a% (from A), b% (from B), c% (from C), d% (from D), and e% (from E) will support the Republican candidate. The margin of error is plus/minus 3% for all results. Suppose that \(\displaystyle{c}{>}{a}{>}{d}{>}{e}{>}{b}\). When you see these results from the newspapers, can you exactly identify which result(s) is (are) not reliable and not accurate? That is, can you identify which estimation interval(s) does (do) not include the true population proportion? If you can, explain why you can, if no, explain why you cannot and what information you need to identify. Discuss and explain your reasons. You must provide your statistical analysis and reasons.
asked 2020-12-25
Case: Dr. Jung’s Diamonds Selection
With Christmas coming, Dr. Jung became interested in buying diamonds for his wife. After perusing the Web, he learned about the “4Cs” of diamonds: cut, color, clarity, and carat. He knew his wife wanted round-cut earrings mounted in white gold settings, so he immediately narrowed his focus to evaluating color, clarity, and carat for that style earring.
After a bit of searching, Dr. Jung located a number of earring sets that he would consider purchasing. But he knew the pricing of diamonds varied considerably. To assist in his decision making, Dr. Jung decided to use regression analysis to develop a model to predict the retail price of different sets of round-cut earrings based on their color, clarity, and carat scores. He assembled the data in the file Diamonds.xls for this purpose. Use this data to answer the following questions for Dr. Jung.
1) Prepare scatter plots showing the relationship between the earring prices (Y) and each of the potential independent variables. What sort of relationship does each plot suggest?
2) Let X1, X2, and X3 represent diamond color, clarity, and carats, respectively. If Dr. Jung wanted to build a linear regression model to estimate earring prices using these variables, which variables would you recommend that he use? Why?
3) Suppose Dr. Jung decides to use clarity (X2) and carats (X3) as independent variables in a regression model to predict earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
4) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. Which sets of earrings appear to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
5) Dr. Jung now remembers that it sometimes helps to perform a square root transformation on the dependent variable in a regression problem. Modify your spreadsheet to include a new dependent variable that is the square root on the earring prices (use Excel’s SQRT( ) function). If Dr. Jung wanted to build a linear regression model to estimate the square root of earring prices using the same independent variables as before, which variables would you recommend that he use? Why?
1
6) Suppose Dr. Jung decides to use clarity (X2) and carats (X3) as independent variables in a regression model to predict the square root of the earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
7) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. (Remember, your model estimates the square root of the earring prices. So you must actually square the model’s estimates to convert them to price estimates.) Which sets of earring appears to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
8) Dr. Jung now also remembers that it sometimes helps to include interaction terms in a regression model—where you create a new independent variable as the product of two of the original variables. Modify your spreadsheet to include three new independent variables, X4, X5, and X6, representing interaction terms where: X4 = X1 × X2, X5 = X1 × X3, and X6 = X2 × X3. There are now six potential independent variables. If Dr. Jung wanted to build a linear regression model to estimate the square root of earring prices using the same independent variables as before, which variables would you recommend that he use? Why?
9) Suppose Dr. Jung decides to use color (X1), carats (X3) and the interaction terms X4 (color * clarity) and X5 (color * carats) as independent variables in a regression model to predict the square root of the earring prices. What is the estimated regression equation? What is the value of the R2 and adjusted-R2 statistics?
10) Use the regression equation identified in the previous question to create estimated prices for each of the earring sets in Dr. Jung’s sample. (Remember, your model estimates the square root of the earring prices. So you must square the model’s estimates to convert them to actual price estimates.) Which sets of earrings appear to be overpriced and which appear to be bargains? Based on this analysis, which set of earrings would you suggest that Dr. Jung purchase?
asked 2020-11-06
Sandy is upgrading her Internet service. Fast Internet charges $15 for installation and $56.45 per month. Quick Internet has free installation but charges $58.95 per month. Complete the equation that can be used to find the number of months after which the Internet service would cost the same. Use the variable x to represent the number of months of Internet service purchased.
asked 2020-12-28
Use what you just learned about negative slopes to solve this problem. A storm moves at a rate of 8 miles per hour. It is 200 miles away from Freeport and headed directly for this town. The equation y = 200 - 8x can be used to represent this function. Identify the slope and y-intercept and explain what they represent.
asked 2021-01-24
You have been asked to bake the birthday cake of a little girl who is about to turn three. When looking up suggestions online on how to bake this cake, you found that most everyone suggests baking the cake in smaller circular cake pans that have a diameter of 6 inches. That’s the best way to get the height for the unicorn head. A normal circular cake pan (and the only kind you have) has a diameter of 9 inches. You need to buy cake pans. As an experienced baker, you know that the recipe you are planning on using usually fills two regular (9-inch) cake pans, with a little room to spare. How many 6-inch pans do you need to buy? (We’re going to assume that all cake pans are the same height.)
...