A bag contains 7 tiles, each with a different number from 1 to 7. You choose a tile without looking, put it aside, choose a second tile without looking, put it aside, then choose a third tile without looking. What is the probability that you choose tiles with the numbers 1, 2, and 3 in that order?

Question
Probability
asked 2020-12-17
A bag contains 7 tiles, each with a different number from 1 to 7. You choose a tile without looking, put it aside, choose a second tile without looking, put it aside, then choose a third tile without looking. What is the probability that you choose tiles with the numbers 1, 2, and 3 in that order?

Answers (1)

2020-12-18
Probability of choosing 1, 2, then 3 is \(\displaystyle\frac{{1}}{{7}}\cdot\frac{{1}}{{6}}\cdot\frac{{1}}{{5}}\)
\(\displaystyle\frac{{1}}{{7}}\cdot\frac{{1}}{{6}}\cdot\frac{{1}}{{5}}=\frac{{1}}{{210}}\)
or \(\displaystyle{0.00476190476}\)
0

Relevant Questions

asked 2020-10-23
The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem.
Suspect was Armed:
Black - 543
White - 1176
Hispanic - 378
Total - 2097
Suspect was unarmed:
Black - 60
White - 67
Hispanic - 38
Total - 165
Total:
Black - 603
White - 1243
Hispanic - 416
Total - 2262
Give your answer as a decimal to at least three decimal places.
a) What percent are Black?
b) What percent are Unarmed?
c) In order for two variables to be Independent of each other, the P \((A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).\)
This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other).
Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed).
Remember, the previous answer is only correct if the variables are Independent.
d) Now let's get the real percent that are Black and Unarmed by using the table?
If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course.
Let's compare the percentage of unarmed shot for each race.
e) What percent are White and Unarmed?
f) What percent are Hispanic and Unarmed?
If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white.
Why is that?
This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage.
Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades
The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group.
g) What percent of blacks shot and killed by police were unarmed?
h) What percent of whites shot and killed by police were unarmed?
i) What percent of Hispanics shot and killed by police were unarmed?
You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police.
j) Why do you believe this is happening?
Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date.
asked 2021-01-24
If you used a random number generator for the numbers from 1 through 20 to play a game, what is the theoretical probability of getting each of these outcomes? a. A multiple of 3 or a multiple of 7, P(multiple of 3 or multiple of 7) b. P( even or odd) c. P(prime or 1) d. How did you find the probabilities of these events?
asked 2021-03-05
You ask a neighbor to water a sickly plant while you are on vacation. Without water the plant will die with probability 0.85. With water it will die with probability 0.5. You are 90 % certain the neighbor will remember to water the plant. You come back from the vacation and the plant is dead. What is the probability that the plant died because neighbor forgot to water it?
asked 2020-11-26
A bag contains 6 red, 4 blue and 8 green marbles. How many marbles of each color should be added so that the total number of marbles is 27, but the probability of randomly selecting one marble of each color remains unchanged.
asked 2021-01-27
Charlie and Clare are playing a number-guessing game. Charlie picked two numbers between 1 and 5. To win the game, Clare must guess both his numbers in three lines. Her guesses, simulated using a random-number generator are shown in the table. If Charlie's numbers are 1 and 3, what is the experimental probability that Clare won?
asked 2021-01-28
Three cards are selected from a deck of cards without replacement. What is the probability that you will get a king, a jack, and a queen?
asked 2020-10-28
A teacher placed thexample 1 ) U, and WW in a bag. A card is drawn at random. Determine the theoretical probability for drawing a card that has a vowel on it. (Example 2 )
asked 2021-02-23
1. A researcher is interested in finding a 98% confidence interval for the mean number of times per day that college students text. The study included 144 students who averaged 44.7 texts per day. The standard deviation was 16.5 texts. a. To compute the confidence interval use a ? z t distribution. b. With 98% confidence the population mean number of texts per day is between and texts. c. If many groups of 144 randomly selected members are studied, then a different confidence interval would be produced from each group. About percent of these confidence intervals will contain the true population number of texts per day and about percent will not contain the true population mean number of texts per day. 2. You want to obtain a sample to estimate how much parents spend on their kids birthday parties. Based on previous study, you believe the population standard deviation is approximately \(\displaystyle\sigma={40.4}\) dollars. You would like to be 90% confident that your estimate is within 1.5 dollar(s) of average spending on the birthday parties. How many parents do you have to sample? n = 3. You want to obtain a sample to estimate a population mean. Based on previous evidence, you believe the population standard deviation is approximately \(\displaystyle\sigma={57.5}\). You would like to be 95% confident that your estimate is within 0.1 of the true population mean. How large of a sample size is required?
asked 2020-11-12
Finance bonds/dividends/loans exercises, need help or formulas
Some of the exercises, calculating the Ri is clear, but then i got stuck:
A security pays a yearly dividend of 7€ during 5 years, and on the 5th year we could sell it at a price of 75€, market rate is 19%, risk free rate 2%, beta 1,8. What would be its price today? 2.1 And if its dividend growths 1,7% each year along these 5 years-what would be its price?
A security pays a constant dividend of 0,90€ during 5 years and thereafter will be sold at 10 €, market rate 18%, risk free rate 2,5%, beta 1,55, what would be its price today?
At what price have i purchased a security if i already made a 5€ profit, and this security pays dividends as follows: first year 1,50 €, second year 2,25€, third year 3,10€ and on the 3d year i will sell it for 18€. Market rate is 8%, risk free rate 0,90%, beta=2,3.
What is the original maturity (in months) for a ZCB, face value 2500€, required rate of return 16% EAR if we paid 700€ and we bought it 6 month after the issuance, and actually we made an instant profit of 58,97€
You'll need 10 Vespas for your Parcel Delivery Business. Each Vespa has a price of 2850€ fully equipped. Your bank is going to fund this operation with a 5 year loan, 12% nominal rate at the beginning, and after increasing 1% every year. You'll have 5 years to fully amortize this loan. You want tot make monthly installments. At what price should you sell it after 3 1/2 years to lose only 10% of the remaining debt.
asked 2021-01-15
What is the probability that a seven-digit phone number contains the number 7?
...