# Solve y=f(x) for x. Then find the input(s) when the output is −3. f(x)=3x+

Question
Functions
Solve y=f(x) for x. Then find the input(s) when the output is −3.
f(x)=3x+

2020-11-10
Let y=f(x):
y=3x+5
Subtract 5 from both sides:
y−5=3x+5−5
y−5=3x
Divide both sides by 3:
(y−5)/3=x
or
x=(y−5)/3
When y=−3,
x=(−3−5)/3
x=−8/3

### Relevant Questions

The graph of y = f(x) contains the point (0,2), $$\displaystyle{\frac{{{\left.{d}{y}\right.}}}{{{\left.{d}{x}\right.}}}}={\frac{{-{x}}}{{{y}{e}^{{{x}^{{2}}}}}}}$$, and f(x) is greater than 0 for all x, then f(x)=
A) $$\displaystyle{3}+{e}^{{-{x}^{{2}}}}$$
B) $$\displaystyle\sqrt{{{3}}}+{e}^{{-{x}}}$$
C) $$\displaystyle{1}+{e}^{{-{x}}}$$
D) $$\displaystyle\sqrt{{{3}+{e}^{{-{x}^{{2}}}}}}$$
E) $$\displaystyle\sqrt{{{3}+{e}^{{{x}^{{2}}}}}}$$
Determine if each relationship is an additive relationship. Explain. Input (x) Output (y) 4 5 7 9 10 13 ​
Find the absolute maximum and absolute minimum values of f on the given interval and state where those values occur: $$f(x)=x^{3}-3x^{2}-9x+25, [-5,10]$$
Consider the function $$f(x)=2x^{3}+6x^{2}-90x+8, [-5,4]$$
find the absolute minimum value of this function.
find the absolute maximum value of this function.
Find the absolute max and min values at the indicated interval
$$f(x)=2x^{3}-x^{2}-4x+10, [-1,0]$$
Find the absolute maximum value and the absolute minimum value, if any, of the function.
$$f(x)=8x-\frac{9}{x}$$
$$f(x)=4x^{3}-6x^{2}-24x+9. [-2,3]$$
$$f(x)=x+\frac{4}{x},[0.2,8]$$
Find the absolute maximum and absolute minimum values of f over the interval. $$f(x)=(\frac{4}{x})+\ln(x^{2}), 1\leq x\leq 4$$
$$f(x)=5+54x-2x^{3}, [0,4]$$