# A group of students at a high school took a students who passed or faidel the exam is bro... following table. Determine whether gender ar... in dependent by filling out the bla in the se... probabilities to the nearest thousandth. Passed Failed Male 9 21 Female 48 2

Question
Describing quantitative data
A group of students at a high school took a students who passed or faidel the exam is bro... following table. Determine whether gender ar... in dependent by filling out the bla
in the se... probabilities to the nearest thousandth.
Passed Failed
Male 9 21
Female 48 2

2021-02-22
Passed Failed Total Given passed and failed. Male 9 21 30 Added total column to show Female 48 2 50 total of all male and female students.
9 males passed/30 male students If asked how many males $$\displaystyle\frac{{9}}{{30}}={0.3}$$ students passed out of all male student
9 males passed/80 students 9/80=0.1125 Male students who passed over all students.
48 females passed/50 total females Females students who passed $$\displaystyle\frac{{48}}{{50}}={0.96}$$ over all female students.

### Relevant Questions

Is there a relationship between gender and relative finger length? To find out, we randomly selected 452 U.S. high school students who completed a survey. The two-way table summarizes the relationship between gender and which finger was longer on the left hand (index finger or ring finger).
$$\begin{array} {lc} & \text{Gender} \ \text {Longer finger} & \begin{array}{l|c|r|r} & \text { Female } & \text { Male } & \text { Total } \\\hline \text { Index finger } & 78 & 45 & 123 \\\hline \text{ Ring finger } & 82 & 152 & 234 \\ \hline \text { Same length } & 52 & 43 & 95 \\ \hline \text { Total } & 212 & 240 & 452 \end{array}\ \end{array}$$
Suppose we randomly select one of the survey respondents. Define events R: ring finger longer and F: female. Given that the chosen student does not have a longer ring finger, what's the probability that this person is male? Write your answer as a probability statement using correct symbols for the events.
The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem.
Suspect was Armed:
Black - 543
White - 1176
Hispanic - 378
Total - 2097
Suspect was unarmed:
Black - 60
White - 67
Hispanic - 38
Total - 165
Total:
Black - 603
White - 1243
Hispanic - 416
Total - 2262
Give your answer as a decimal to at least three decimal places.
a) What percent are Black?
b) What percent are Unarmed?
c) In order for two variables to be Independent of each other, the P $$(A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).$$
This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other).
Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed).
Remember, the previous answer is only correct if the variables are Independent.
d) Now let's get the real percent that are Black and Unarmed by using the table?
If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course.
Let's compare the percentage of unarmed shot for each race.
e) What percent are White and Unarmed?
f) What percent are Hispanic and Unarmed?
If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white.
Why is that?
This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage.
Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades
The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group.
g) What percent of blacks shot and killed by police were unarmed?
h) What percent of whites shot and killed by police were unarmed?
i) What percent of Hispanics shot and killed by police were unarmed?
You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police.
j) Why do you believe this is happening?
Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date.
The following table gives a two-way classification of all basketball players at a state university who began their college careers between 2004 and 2008, based on gender and whether or not they graduated.
$$\begin{array}{|c|c|c|}\hline &\text{Graduated}&\text{Did not Graduate}\\\hline \text{Male} &129&51\\ \hline \text{Female}&134&36 \\ \hline \end{array}\\$$
If one of these players is selected at random, find the following probability.
$$P(\text{graduated or male})=$$ Enter your answer in accordance to the question statement
Twenty-six students in a college algebra class took a final exam on which the passing score was 70. The mean score of those who passed was 78, and the mean score of those who failed was 26. The mean of all scores was 72.
How many students failed the exam?
Show whether the following is quantitative or qualitative data
i) Gender of students at a college
ii) Weight of babies at a hospital
iii) Colour of sweets in a box
iv) Number of students in a class
v) Colour of sweets in a box
The following is a two-way table showing preferences for an award (A, B, C) by gender for the students sampled in survey. Test whether the data indicate there is some association between gender and preferred award.
$$\begin{array}{|c|c|c|}\hline &\text{A}&\text{B}&\text{C}&\text{Total}\\\hline \text{Female} &20&76&73&169\\ \hline \text{Male}&11&73&109&193 \\ \hline \text{Total}&31&149&182&360 \\ \hline \end{array}\\$$
Chi-square statistic=?
p-value=?
Conclusion: (reject or do not reject $$H_0$$)
Does the test indicate an association between gender and preferred award? (yes/no)
A local school has both male and female students Each student either plays a sport or doesn't. The two-way table summarizes a random sample of 80 students.
$$\begin{array}{|c|c|c|}\hline& \text{Female} & \text{male} \\ \hline\text{No sport} & 12&15\\\hline\text{Sport}&36&17\\ \hline\end{array}$$
Let sport be the event that a randomly chosen student (from the table) plays a sport
Let female be the event that a randomly chosen student (from the table) is female.
$$\begin{array}{c|cc|c} &\text{Physics}&\text{Chemistry}&\text{Total}\\ \hline \text{Males}&100&68&168\\ \text{Females}&71&61&132\\ \hline \text{Total}&171&129&300 \end{array}\$$