# A footwear company is preparing to market a new kind of sports shoe. The company plans to spend $28 million on advertising. Past experience shows that the amount spent on television advertising should be 3.5 times as much as the amount spent on magazine advertising. Determine how much money should be spent on each type of advertising. Question Equations asked 2021-02-11 A footwear company is preparing to market a new kind of sports shoe. The company plans to spend$28 million on advertising. Past experience shows that the amount spent on television advertising should be 3.5 times as much as the amount spent on magazine advertising. Determine how much money should be spent on each type of advertising.

2021-02-12
"television advertising should be 3.5 times as much as the amount spent on magazine advertising": T = 3.5M
"The company plans to spend $28 million on advertising": T + M = 28,000,000 substitute T + M = 28000000 (3.5M) + M = 28000000 4.5M. = 28000000 M =$6,222,222.22
subsitute
T = 3.5M
T = 3.5(6,222,222.22)
T = $21,777,777.77 ### Relevant Questions asked 2021-02-23 1. A researcher is interested in finding a 98% confidence interval for the mean number of times per day that college students text. The study included 144 students who averaged 44.7 texts per day. The standard deviation was 16.5 texts. a. To compute the confidence interval use a ? z t distribution. b. With 98% confidence the population mean number of texts per day is between and texts. c. If many groups of 144 randomly selected members are studied, then a different confidence interval would be produced from each group. About percent of these confidence intervals will contain the true population number of texts per day and about percent will not contain the true population mean number of texts per day. 2. You want to obtain a sample to estimate how much parents spend on their kids birthday parties. Based on previous study, you believe the population standard deviation is approximately $$\displaystyle\sigma={40.4}$$ dollars. You would like to be 90% confident that your estimate is within 1.5 dollar(s) of average spending on the birthday parties. How many parents do you have to sample? n = 3. You want to obtain a sample to estimate a population mean. Based on previous evidence, you believe the population standard deviation is approximately $$\displaystyle\sigma={57.5}$$. You would like to be 95% confident that your estimate is within 0.1 of the true population mean. How large of a sample size is required? asked 2020-11-06 A small grocer finds that the monthly sales y (in$) can be approximated as a function of the amount spent advertising on the radio $$x_1$$
(in $) and the amount spent advertising in the newspaper $$x_2$$ (in$) according to $$y=ax_1+bx_2+c$$
The table gives the amounts spent in advertising and the corresponding monthly sales for 3 months.
$$\begin{array}{|c|c|c|}\hline \text { Advertising, } x_{1} & \text { Advertising, } x_{2} &\text{sales, y} \\ \hline  2400 & { 800} & { 36,000} \\ \hline  2000 & { 500} & { 30,000} \\ \hline  3000 & { 1000} & { 44,000} \\ \hline\end{array}$$
a) Use the data to write a system of linear equations to solve for a, b, and c.
b) Use a graphing utility to find the reduced row-echelon form of the augmented matrix.
c) Write the model $$y=ax_1+bx_2+c$$
d) Predict the monthly sales if the grocer spends $250 advertising on the radio and$500 advertising in the newspaper for a given month.
Iron is very important for babies' growth. A common belief is that breastfeeding will help the baby to get more iron than formula feeding. To justify the belief, a study followed 2 groups of babies from born to 6 months. With one group babies are breast fed, and the other group are formula fed without iron supplements. Data below shows iron levels of those two groups of babies. $$\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}{G}{r}{o}{u}{p}&{S}{a}\mp\le\ {s}{i}{z}{e}&{m}{e}{a}{n}&{S}{\tan{{d}}}{a}{r}{d}\ {d}{e}{v}{i}{a}{t}{i}{o}{n}\backslash{h}{l}\in{e}{B}{r}{e}\ast-{f}{e}{d}&{23}&{13.3}&{1.7}\backslash{h}{l}\in{e}{F}{\quad\text{or}\quad}\mu{l}{a}-{f}{e}{d}&{23}&{12.4}&{1.8}\backslash{h}{l}\in{e}{D}{I}{F}{F}={B}{r}{e}\ast-{F}{\quad\text{or}\quad}\mu{l}{a}&{23}&{0.9}&{1.4}\backslash{e}{n}{d}{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}$$ (1) There are two groups we need to compare for the study: Breast-Fed and Formula- Fed. Are those two groups dependent or independent? Based on your answer, what inference procedure should we apply for this research? (2) Please perform the inference you decided in (1), and make sure to follow the 5-step procedure for any hypothesis test. (3) Based on your conclusion in (2), what kind of error could you make? Explain the type of error using the context words for this research
A trust fund has $200,000 to invest. Three alternative investments have been identified, earning 10 percent, 7 percent, and 8 percent, respectively. A goal has been set to earn an annual income of$16,000 on the total investment. One condition set by the trust is that the combined investment in alternatives 2 and 3 should be triple the amount invested in alternative 1. Determine the amount of money which should be invested in each option to satisfy the requirements of the trust fund.
The accompanying two-way table was constructed using data in the article “Television Viewing and Physical Fitness in Adults” (Research Quarterly for Exercise and Sport, 1990: 315–320). The author hoped to determine whether time spent watching television is associated with cardiovascular fitness. Subjects were asked about their television-viewing habits and were classified as physically fit if they scored in the excellent or very good category on a step test. We include MINITAB output from a chi-squared analysis. The four TV groups corresponded to different amounts of time per day spent watching TV (0, 1–2, 3–4, or 5 or more hours). The 168 individuals represented in the first column were those judged physically fit. Expected counts appear below observed counts, and MINITAB displays the contribution to $$\displaystyle{x}^{{{2}}}$$ from each cell.
State and test the appropriate hypotheses using $$\displaystyle\alpha={0.05}$$
$$\displaystyle{b}{e}{g}\in{\left\lbrace{a}{r}{r}{a}{y}\right\rbrace}{\left\lbrace{\left|{c}\right|}{c}{\mid}\right\rbrace}{h}{l}\in{e}&{a}\mp,\ {1}&{a}\mp,\ {2}&{a}\mp,\ {T}{o}{t}{a}{l}\backslash{h}{l}\in{e}{1}&{a}\mp,\ {35}&{a}\mp,\ {147}&{a}\mp,\ {182}\backslash{h}{l}\in{e}&{a}\mp,\ {25.48}&{a}\mp,\ {156.52}&{a}\mp,\backslash{h}{l}\in{e}{2}&{a}\mp,\ {101}&{a}\mp,\ {629}&{a}\mp,\ {730}\backslash{h}{l}\in{e}&{a}\mp,\ {102.20}&{a}\mp,\ {627.80}&{a}\mp,\backslash{h}{l}\in{e}{3}&{a}\mp,\ {28}&{a}\mp,\ {222}&{a}\mp,\ {250}\backslash{h}{l}\in{e}&{a}\mp,\ {35.00}&{a}\mp,\ {215.00}&{a}\mp,\backslash{h}{l}\in{e}{4}&{a}\mp,\ {4}&{a}\mp,\ {34}&{a}\mp,\ {38}\backslash{h}{l}\in{e}&{a}\mp,\ {5.32}&{a}\mp,\ {32.68}&{a}\mp,\backslash{h}{l}\in{e}{T}{o}{t}{a}{l}&{a}\mp,\ {168}&{a}\mp,\ {1032}&{a}\mp,\ {1200}\backslash{h}{l}\in{e}$$
$$\displaystyle{C}{h}{i}{s}{q}={a}\mp,\ {3.557}\ +\ {0.579}\ +\ {a}\mp,\ {0.014}\ +\ {0.002}\ +\ {a}\mp,\ {1.400}\ +\ {0.228}\ +\ {a}\mp,\ {0.328}\ +\ {0.053}={6.161}$$
$$\displaystyle{d}{f}={3}$$
A resort is situated on an island that lies exactly 4 miles from P, the closest point to the island along a perfectly straight shoreline. 10 miles down the shoreline from P is the nearest source of water. If it costs 1.6 times as much money to lay pipe in the water as it does on land, how far down the shoreline from P should the pipe from the island reach land with minimum total constructions costs?
Write an equation to solve each problem. Two brothers are saving money to buy tickets to a concert. Their combined savings is $$\55$$. One brother ha s $$\15$$ more than the other. How much has each saved?
PROBLEMS: (Show 5 step process) 1. Independent random samples taken on two university campuses revealed the following information concerning the average amount of money spent on textbooks during the fall semester. University A University B Sample Size 50 40 Average Purchase $280$250 Standard Deviation $20$23 At = .05, test to determine if, on the average, students at University A spend more on textbooks then the students at University B.
Finance bonds/dividends/loans exercises, need help or formulas
Some of the exercises, calculating the Ri is clear, but then i got stuck:
A security pays a yearly dividend of 7€ during 5 years, and on the 5th year we could sell it at a price of 75€, market rate is 19%, risk free rate 2%, beta 1,8. What would be its price today? 2.1 And if its dividend growths 1,7% each year along these 5 years-what would be its price?
A security pays a constant dividend of 0,90€ during 5 years and thereafter will be sold at 10 €, market rate 18%, risk free rate 2,5%, beta 1,55, what would be its price today?
At what price have i purchased a security if i already made a 5€ profit, and this security pays dividends as follows: first year 1,50 €, second year 2,25€, third year 3,10€ and on the 3d year i will sell it for 18€. Market rate is 8%, risk free rate 0,90%, beta=2,3.
What is the original maturity (in months) for a ZCB, face value 2500€, required rate of return 16% EAR if we paid 700€ and we bought it 6 month after the issuance, and actually we made an instant profit of 58,97€
You'll need 10 Vespas for your Parcel Delivery Business. Each Vespa has a price of 2850€ fully equipped. Your bank is going to fund this operation with a 5 year loan, 12% nominal rate at the beginning, and after increasing 1% every year. You'll have 5 years to fully amortize this loan. You want tot make monthly installments. At what price should you sell it after 3 1/2 years to lose only 10% of the remaining debt.
The table below shows the number of people for three different race groups who were shot by police that were either armed or unarmed. These values are very close to the exact numbers. They have been changed slightly for each student to get a unique problem.
Suspect was Armed:
Black - 543
White - 1176
Hispanic - 378
Total - 2097
Suspect was unarmed:
Black - 60
White - 67
Hispanic - 38
Total - 165
Total:
Black - 603
White - 1243
Hispanic - 416
Total - 2262
Give your answer as a decimal to at least three decimal places.
a) What percent are Black?
b) What percent are Unarmed?
c) In order for two variables to be Independent of each other, the P $$(A and B) = P(A) \cdot P(B) P(A and B) = P(A) \cdot P(B).$$
This just means that the percentage of times that both things happen equals the individual percentages multiplied together (Only if they are Independent of each other).
Therefore, if a person's race is independent of whether they were killed being unarmed then the percentage of black people that are killed while being unarmed should equal the percentage of blacks times the percentage of Unarmed. Let's check this. Multiply your answer to part a (percentage of blacks) by your answer to part b (percentage of unarmed).
Remember, the previous answer is only correct if the variables are Independent.
d) Now let's get the real percent that are Black and Unarmed by using the table?
If answer c is "significantly different" than answer d, then that means that there could be a different percentage of unarmed people being shot based on race. We will check this out later in the course.
Let's compare the percentage of unarmed shot for each race.
e) What percent are White and Unarmed?
f) What percent are Hispanic and Unarmed?
If you compare answers d, e and f it shows the highest percentage of unarmed people being shot is most likely white.
Why is that?
This is because there are more white people in the United States than any other race and therefore there are likely to be more white people in the table. Since there are more white people in the table, there most likely would be more white and unarmed people shot by police than any other race. This pulls the percentage of white and unarmed up. In addition, there most likely would be more white and armed shot by police. All the percentages for white people would be higher, because there are more white people. For example, the table contains very few Hispanic people, and the percentage of people in the table that were Hispanic and unarmed is the lowest percentage.
Think of it this way. If you went to a college that was 90% female and 10% male, then females would most likely have the highest percentage of A grades. They would also most likely have the highest percentage of B, C, D and F grades
The correct way to compare is "conditional probability". Conditional probability is getting the probability of something happening, given we are dealing with just the people in a particular group.
g) What percent of blacks shot and killed by police were unarmed?
h) What percent of whites shot and killed by police were unarmed?
i) What percent of Hispanics shot and killed by police were unarmed?
You can see by the answers to part g and h, that the percentage of blacks that were unarmed and killed by police is approximately twice that of whites that were unarmed and killed by police.
j) Why do you believe this is happening?
Do a search on the internet for reasons why blacks are more likely to be killed by police. Read a few articles on the topic. Write your response using the articles as references. Give the websites used in your response. Your answer should be several sentences long with at least one website listed. This part of this problem will be graded after the due date.
...