Which statement cannot be true? Explain. A. \(\displaystyle{\sin{{A}}}={0.5}\) B. \(\displaystyle{\sin{{A}}}={1.2654}\) C. \(\displaystyle{\sin{{A}}}={0.9962}\) D. \(\sin A = \frac{3}{4}\)

The sine of an angle can only be from -1 to 1. Since \(1.2654>1\), then choice \(B \sin A = 1.2654\) cannot be true.

expert advice

When using the half-angle formulas for trigonometric functions of \(\displaystyle\frac{\alpha}{{2}}\), I determine the sign based on the quadrant in which \(\alpha\) lies.Determine whether the statement makes sense or does not make sense, and explain your reasoning.

Find the values of the other trigonometric functions of theta if \(\displaystyle{\cot{\theta}}=-\frac{{4}}{{3}}{\quad\text{and}\quad}{\sin{\theta}}{<}{0}\).

To find the equation: \(\displaystyle\frac{{ \sin{{x}}+ \sin{{x}} \tan{{x}}}}{{{1}+ \tan{{x}}}}= \sin{{x}}\)

\(\displaystyle{\sin{{\left({2}{{\cos}^{{-{{1}}}}\times}{\left(\frac{{\sqrt{{2}}}}{{2}}\right)}\right)}}}\)