Given that there are 2 carbon atoms and 4 hydrogen atoms, the ratio is:

\(\displaystyle\frac{{2}}{{4}}\) or 2 : 4

So, the answer is A.

\(\displaystyle\frac{{2}}{{4}}\) or 2 : 4

So, the answer is A.

Question

asked 2021-03-22

The equilibrium separation of H atoms in the H2 molecule is 0.074 nm, calculate the energies and wavelengths of photons for the rotational transitions (a) L = 1 to L = 0, (b) L = 2 to L = 1, and (c) L =3 to L = 2

asked 2021-05-22

Sheila is in Ms. Cai's class . She noticed that the graph of the perimeter for the "dented square" in problem 3-61 was a line . "I wonder what the graph of its area looks like ," she said to her teammates .

a. Write an equation for the area of the "dented square" if xx represents the length of the large square and yy represents the area of the square.

b. On graph paper , graph the rule you found for the area in part (a). Why does a 1st−quadrant graph make sense for this situation? Are there other values of xx that cannot work in this situation? Be sure to include an indication of this on your graph, as necessary.

c. Explain to Sheila what the graph of the area looks like.

d. Use the graph to approximate xx when the area of the shape is 20 square units.

a. Write an equation for the area of the "dented square" if xx represents the length of the large square and yy represents the area of the square.

b. On graph paper , graph the rule you found for the area in part (a). Why does a 1st−quadrant graph make sense for this situation? Are there other values of xx that cannot work in this situation? Be sure to include an indication of this on your graph, as necessary.

c. Explain to Sheila what the graph of the area looks like.

d. Use the graph to approximate xx when the area of the shape is 20 square units.

asked 2021-06-13

1. Who seems to have more variability in their shoe sizes, men or women?

a) Men

b) Women

c) Neither group show variability

d) Flag this Question

2. In general, why use the estimate of \(n-1\) rather than n in the computation of the standard deviation and variance?

a) The estimate n-1 is better because it is used for calculating the population variance and standard deviation

b) The estimate n-1 is never used to calculate the sample variance and standard deviation

c) \(n-1\) provides an unbiased estimate of the population and allows more variability when using a sample and gives a better mathematical estimate of the population

d) The estimate n-1 is better because it is use for calculation of both the population and sample variance as well as standard deviation.

\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 25.7 & M \\ \hline 25.4 & F \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 26.7 & M \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 25.4 & F \\ \hline 25.7 & M \\ \hline 25.7 & F \\ \hline 23.5 & F \\ \hline 23.1 & F \\ \hline 26 & M \\ \hline 23.5 & F \\ \hline 26.7 & F \\ \hline 26 & M \\ \hline 23.1 & F \\ \hline 25.1 & F \\ \hline 27 & M \\ \hline 25.4 & F \\ \hline 23.5 & F \\ \hline 23.8 & F \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline \end{array}\)

\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 27.6 & M \\ \hline 26.9 & F \\ \hline 26 & F \\ \hline 28.4 & M \\ \hline 23.5 & F \\ \hline 27 & F \\ \hline 25.1 & F \\ \hline 28.4 & M \\ \hline 23.1 & F \\ \hline 23.8 & F \\ \hline 26 & F \\ \hline 25.4 & M \\ \hline 23.8 & F \\ \hline 24.8 & M \\ \hline 25.1 & F \\ \hline 24.8 & F \\ \hline 26 & M \\ \hline 25.4 & F \\ \hline 26 & M \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline 27 & M \\ \hline 23.5 & F \\ \hline 29 & F \\ \hline \end{array}\)

a) Men

b) Women

c) Neither group show variability

d) Flag this Question

2. In general, why use the estimate of \(n-1\) rather than n in the computation of the standard deviation and variance?

a) The estimate n-1 is better because it is used for calculating the population variance and standard deviation

b) The estimate n-1 is never used to calculate the sample variance and standard deviation

c) \(n-1\) provides an unbiased estimate of the population and allows more variability when using a sample and gives a better mathematical estimate of the population

d) The estimate n-1 is better because it is use for calculation of both the population and sample variance as well as standard deviation.

\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 25.7 & M \\ \hline 25.4 & F \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 26.7 & M \\ \hline 23.8 & F \\ \hline 25.4 & F \\ \hline 25.4 & F \\ \hline 25.7 & M \\ \hline 25.7 & F \\ \hline 23.5 & F \\ \hline 23.1 & F \\ \hline 26 & M \\ \hline 23.5 & F \\ \hline 26.7 & F \\ \hline 26 & M \\ \hline 23.1 & F \\ \hline 25.1 & F \\ \hline 27 & M \\ \hline 25.4 & F \\ \hline 23.5 & F \\ \hline 23.8 & F \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline \end{array}\)

\(\begin{array}{|c|c|}\hline \text{Shoe Size (in cm)} & \text{Gender (M of F)} \\ \hline 27.6 & M \\ \hline 26.9 & F \\ \hline 26 & F \\ \hline 28.4 & M \\ \hline 23.5 & F \\ \hline 27 & F \\ \hline 25.1 & F \\ \hline 28.4 & M \\ \hline 23.1 & F \\ \hline 23.8 & F \\ \hline 26 & F \\ \hline 25.4 & M \\ \hline 23.8 & F \\ \hline 24.8 & M \\ \hline 25.1 & F \\ \hline 24.8 & F \\ \hline 26 & M \\ \hline 25.4 & F \\ \hline 26 & M \\ \hline 27 & M \\ \hline 25.7 & F \\ \hline 27 & M \\ \hline 23.5 & F \\ \hline 29 & F \\ \hline \end{array}\)

asked 2021-05-14

Consider the accompanying data on flexural strength (MPa) for concrete beams of a certain type.

\(\begin{array}{|c|c|}\hline 11.8 & 7.7 & 6.5 & 6 .8& 9.7 & 6.8 & 7.3 \\ \hline 7.9 & 9.7 & 8.7 & 8.1 & 8.5 & 6.3 & 7.0 \\ \hline 7.3 & 7.4 & 5.3 & 9.0 & 8.1 & 11.3 & 6.3 \\ \hline 7.2 & 7.7 & 7.8 & 11.6 & 10.7 & 7.0 \\ \hline \end{array}\)

a) Calculate a point estimate of the mean value of strength for the conceptual population of all beams manufactured in this fashion. \([Hint.\ ?x_{j}=219.5.]\) (Round your answer to three decimal places.)

MPa

State which estimator you used.

\(x\)

\(p?\)

\(\frac{s}{x}\)

\(s\)

\(\tilde{\chi}\)

b) Calculate a point estimate of the strength value that separates the weakest \(50\%\) of all such beams from the strongest \(50\%\).

MPa

State which estimator you used.

\(s\)

\(x\)

\(p?\)

\(\tilde{\chi}\)

\(\frac{s}{x}\)

c) Calculate a point estimate of the population standard deviation ?. \([Hint:\ ?x_{i}2 = 1859.53.]\) (Round your answer to three decimal places.)

MPa

Interpret this point estimate.

This estimate describes the linearity of the data.

This estimate describes the bias of the data.

This estimate describes the spread of the data.

This estimate describes the center of the data.

Which estimator did you use?

\(\tilde{\chi}\)

\(x\)

\(s\)

\(\frac{s}{x}\)

\(p?\)

d) Calculate a point estimate of the proportion of all such beams whose flexural strength exceeds 10 MPa. [Hint: Think of an observation as a "success" if it exceeds 10.] (Round your answer to three decimal places.)

e) Calculate a point estimate of the population coefficient of variation \(\frac{?}{?}\). (Round your answer to four decimal places.)

State which estimator you used.

\(p?\)

\(\tilde{\chi}\)

\(s\)

\(\frac{s}{x}\)

\(x\)

\(\begin{array}{|c|c|}\hline 11.8 & 7.7 & 6.5 & 6 .8& 9.7 & 6.8 & 7.3 \\ \hline 7.9 & 9.7 & 8.7 & 8.1 & 8.5 & 6.3 & 7.0 \\ \hline 7.3 & 7.4 & 5.3 & 9.0 & 8.1 & 11.3 & 6.3 \\ \hline 7.2 & 7.7 & 7.8 & 11.6 & 10.7 & 7.0 \\ \hline \end{array}\)

a) Calculate a point estimate of the mean value of strength for the conceptual population of all beams manufactured in this fashion. \([Hint.\ ?x_{j}=219.5.]\) (Round your answer to three decimal places.)

MPa

State which estimator you used.

\(x\)

\(p?\)

\(\frac{s}{x}\)

\(s\)

\(\tilde{\chi}\)

b) Calculate a point estimate of the strength value that separates the weakest \(50\%\) of all such beams from the strongest \(50\%\).

MPa

State which estimator you used.

\(s\)

\(x\)

\(p?\)

\(\tilde{\chi}\)

\(\frac{s}{x}\)

c) Calculate a point estimate of the population standard deviation ?. \([Hint:\ ?x_{i}2 = 1859.53.]\) (Round your answer to three decimal places.)

MPa

Interpret this point estimate.

This estimate describes the linearity of the data.

This estimate describes the bias of the data.

This estimate describes the spread of the data.

This estimate describes the center of the data.

Which estimator did you use?

\(\tilde{\chi}\)

\(x\)

\(s\)

\(\frac{s}{x}\)

\(p?\)

d) Calculate a point estimate of the proportion of all such beams whose flexural strength exceeds 10 MPa. [Hint: Think of an observation as a "success" if it exceeds 10.] (Round your answer to three decimal places.)

e) Calculate a point estimate of the population coefficient of variation \(\frac{?}{?}\). (Round your answer to four decimal places.)

State which estimator you used.

\(p?\)

\(\tilde{\chi}\)

\(s\)

\(\frac{s}{x}\)

\(x\)