A teacher placed thexample 1 ) U, and WW in a bag. A card is drawn at random. Determine the theoretical probability for drawing a card that has a vowel on it. (Example 2 )

A teacher placed thexample 1 ) U, and WW in a bag. A card is drawn at random. Determine the theoretical probability for drawing a card that has a vowel on it. (Example 2 )

Question
Probability
asked 2020-10-28
A teacher placed thexample 1 ) U, and WW in a bag. A card is drawn at random. Determine the theoretical probability for drawing a card that has a vowel on it. (Example 2 )

Answers (1)

2020-10-29
There are 3 vowels (E, O, and U) among the 6 cards. So, the theoretical probability of drawing a vowel card is:
\(\displaystyle\frac{{3}}{{6}}=\frac{{1}}{{2}}\) or 50%
0

Relevant Questions

asked 2021-04-21
The crane shown in the drawing is lifting a 182-kg crate upward with an acceleration of \(\displaystyle{1.5}\frac{{m}}{{s}^{{2}}}\). The cable from the crate passes over a solid cylindrical pulley at the top of the boom. The pulley has a mass of 130 kg. The cable is then wound ontoa hollow cylindrical drum that is mounted on the deck of the crane.The mass of the drum is 150 kg, and its radius is 0.76 m. The engine applies a counter clockwise torque to the drum in order towind up the cable. What is the magnitude of this torque? Ignore the mass of the cable.
asked 2021-01-27
A card is drawn at random from a well-shuffled deck of 52 cards. What is the probability of drawing a face card or a 5?
asked 2021-02-10
Two light sources of identical strength are placed 8 m apart. An object is to be placed at a point P on a line ? parallel to the line joining the light sources and at a distance d meters from it (see the figure). We want to locate P on ? so that the intensity of illumination is minimized. We need to use the fact that the intensity of illumination for a single source is directly proportional to the strength of the source and inversely proportional to the square of the distance from the source.
asked 2021-04-25
The unstable nucleus uranium-236 can be regarded as auniformly charged sphere of charge Q=+92e and radius \(\displaystyle{R}={7.4}\times{10}^{{-{15}}}\) m. In nuclear fission, this can divide into twosmaller nuclei, each of 1/2 the charge and 1/2 the voume of theoriginal uranium-236 nucleus. This is one of the reactionsthat occurred n the nuclear weapon that exploded over Hiroshima, Japan in August 1945.
A. Find the radii of the two "daughter" nuclei of charge+46e.
B. In a simple model for the fission process, immediatelyafter the uranium-236 nucleus has undergone fission the "daughter"nuclei are at rest and just touching. Calculate the kineticenergy that each of the "daughter" nuclei will have when they arevery far apart.
C. In this model the sum of the kinetic energies of the two"daughter" nuclei is the energy released by the fission of oneuranium-236 nucleus. Calculate the energy released by thefission of 10.0 kg of uranium-236. The atomic mass ofuranium-236 is 236 u, where 1 u = 1 atomic mass unit \(\displaystyle={1.66}\times{10}^{{-{27}}}\) kg. Express your answer both in joules and in kilotonsof TNT (1 kiloton of TNT releases 4.18 x 10^12 J when itexplodes).
asked 2021-03-31
A paraglider is flying horizontally at a constant speed.Assume that only two forces act on it in the vertical direction,its weight and a vertical lift force exerted on its wings by theair. The lift force has a magnitude of 1800 N.
(a) What is the magnitude and direction of the force that theparaglider exerts on the earth ?
(b)If the lift force should suddenly decrease to 1200 N, whatwould be the vertical acceleration of the glider ? For bothquestions, take the upward direction to be the + y direction.
asked 2021-05-05
The bulk density of soil is defined as the mass of dry solidsper unit bulk volume. A high bulk density implies a compact soilwith few pores. Bulk density is an important factor in influencing root development, seedling emergence, and aeration. Let X denotethe bulk density of Pima clay loam. Studies show that X is normally distributed with \(\displaystyle\mu={1.5}\) and \(\displaystyle\sigma={0.2}\frac{{g}}{{c}}{m}^{{3}}\).
(a) What is thedensity for X? Sketch a graph of the density function. Indicate onthis graph the probability that X lies between 1.1 and 1.9. Findthis probability.
(b) Find the probability that arandomly selected sample of Pima clay loam will have bulk densityless than \(\displaystyle{0.9}\frac{{g}}{{c}}{m}^{{3}}\).
(c) Would you be surprised if a randomly selected sample of this type of soil has a bulkdensity in excess of \(\displaystyle{2.0}\frac{{g}}{{c}}{m}^{{3}}\)? Explain, based on theprobability of this occurring.
(d) What point has the property that only 10% of the soil samples have bulk density this high orhigher?
(e) What is the moment generating function for X?
asked 2021-01-02
Geographical Analysis (Jan, 2010) presented a study of Emergency Medical Services (EMS) ability to meet the demand for an ambulance. In one example, the researchers presented the following scenario. An ambulance station has one vehicle and two demand locations, A and B. The probability that the ambulance can travel to a location in under eight minutes is .58 for location A and .42 for location B. The probability that the ambulance is busy at any point in time is .3. a. Find the probability that EMS can meet demand for an ambulance at location A. b. Find the probability that EMS can meet demand for an ambulance at location B.
asked 2021-04-18
A tire 2.00ft in diameter is placed on a balancing machine,where it is spun so that its tread is moving at a constant speed of60.0 mi/h. A small stone is stuck in the tread of the tire. What isthe acceleration of the stone as the tire is being balanced?
asked 2020-12-17
A bag contains 7 tiles, each with a different number from 1 to 7. You choose a tile without looking, put it aside, choose a second tile without looking, put it aside, then choose a third tile without looking. What is the probability that you choose tiles with the numbers 1, 2, and 3 in that order?
asked 2021-05-03
A charge of \(\displaystyle{6.00}\times{10}^{{-{9}}}\) C and a charge of \(\displaystyle-{3.00}\times{10}^{{-{9}}}\) C are separated by a distance of 60.0 cm. Find the position at which a third charge, of \(\displaystyle{12.0}\times{10}^{{-{9}}}\) C, can be placed so that the net electrostatic force on it is zero.
...