# Perform the matrix operations. begin{bmatrix}1 & 3&2 0 & 2&-40&0&3 end{bmatrix}begin{bmatrix}4 & -3&2 0 & 3&-10&0&2 end{bmatrix}

Perform the matrix operations.
$\left[\begin{array}{ccc}1& 3& 2\\ 0& 2& -4\\ 0& 0& 3\end{array}\right]\left[\begin{array}{ccc}4& -3& 2\\ 0& 3& -1\\ 0& 0& 2\end{array}\right]$
You can still ask an expert for help

• Questions are typically answered in as fast as 30 minutes

Solve your problem for the price of one coffee

• Math expert for every subject
• Pay only if we can solve it

hajavaF
Step 1
Consider the given matrices as
$AB=\left[\begin{array}{ccc}1& 3& 2\\ 0& 2& -4\\ 0& 0& 3\end{array}\right]\left[\begin{array}{ccc}4& -3& 2\\ 0& 3& -1\\ 0& 0& 2\end{array}\right]$
where matrix A is
$A=\left[\begin{array}{ccc}1& 3& 2\\ 0& 2& -4\\ 0& 0& 3\end{array}\right]$
and matrix B is $B=\left[\begin{array}{ccc}4& -3& 2\\ 0& 3& -1\\ 0& 0& 2\end{array}\right]$
Step 2 To perform multiplication of given matrices
$\left[\begin{array}{ccc}1\left(4\right)+3\left(0\right)+2\left(0\right)& 1\left(-3\right)+3\left(3\right)+2\left(0\right)& 1\left(2\right)+3\left(-1\right)+2\left(2\right)\\ 0\left(4\right)+2\left(0\right)-4\left(0\right)& 0\left(-3\right)+2\left(3\right)+0& 0\left(2\right)+2\left(-1\right)-4\left(2\right)\\ 0\left(4\right)+0+3\left(0\right)& 0+0+0& 0+0+3\left(2\right)\end{array}\right]$
After solving the above terms of matrix
$AB=\left[\begin{array}{ccc}4& 6& 3\\ 0& 6& -10\\ 0& 0& 6\end{array}\right]$
Jeffrey Jordon