Question

Perform the matrix operations. begin{bmatrix}1 & 3&2 0 & 2&-40&0&3 end{bmatrix}begin{bmatrix}4 & -3&2 0 & 3&-10&0&2 end{bmatrix}

Matrices
ANSWERED
asked 2020-11-10
Perform the matrix operations.
\(\begin{bmatrix}1 & 3&2 \\0 & 2&-4\\0&0&3 \end{bmatrix}\begin{bmatrix}4 & -3&2 \\0 & 3&-1\\0&0&2 \end{bmatrix}\)

Answers (1)

2020-11-11
Step 1
Consider the given matrices as
\(AB=\begin{bmatrix}1 & 3&2 \\0 & 2&-4\\0&0&3 \end{bmatrix}\begin{bmatrix}4 & -3&2 \\0 & 3&-1\\0&0&2 \end{bmatrix}\)
where matrix A is
\(A=\begin{bmatrix}1 & 3&2 \\0 & 2&-4\\0&0&3 \end{bmatrix}\)
and matrix B is \(B=\begin{bmatrix}4 & -3&2 \\0 & 3&-1\\0&0&2 \end{bmatrix}\)
Step 2 To perform multiplication of given matrices
\(\begin{bmatrix}1(4)+3(0)+2(0) & 1(-3)+3(3)+2(0)&1(2)+3(-1)+2(2) \\0(4)+2(0)-4(0) & 0(-3)+2(3)+0&0(2)+2(-1)-4(2)\\0(4)+0+3(0)&0+0+0&0+0+3(2) \end{bmatrix}\)
After solving the above terms of matrix
\(AB=\begin{bmatrix}4&6&3\\0&6&-10\\0&0&6 \end{bmatrix}\)
0
 
Best answer

expert advice

Need a better answer?

Relevant Questions

asked 2021-05-13
Find a basis for the eigenspace corresponding to the eigenvalue of A given below.
\(A=\begin{bmatrix}4 & 0&2&0 \\4 & 2&10&0\\3&-4&17&0\\2&-2&8&3 \end{bmatrix} , \lambda=3\)
asked 2020-10-25

Solve for X in the equation, given
\(3X + 2A = B\)
\(A=\begin{bmatrix}-4 & 0 \\1 & -5\\-3&2 \end{bmatrix} \text{ and } B=\begin{bmatrix}1 & 2 \\ -2 & 1 \\ 4&4 \end{bmatrix}\)

asked 2021-03-09

Use the graphing calculator to solve if possible
\(A=\begin{bmatrix}1 & 0&5 \\1 & -5&7\\0&3&-4 \end{bmatrix}\\ B=\begin{bmatrix}3 & -5&3 \\2&3&1\\4&1&-3\end{bmatrix}\\ C=\begin{bmatrix}5 & 2&3 \\2& -1&0 \end{bmatrix}\\ D=\begin{bmatrix}5 \\-3\\4 \end{bmatrix}\)
Find the value in row 2 column 3 of \(AB-3B\)

asked 2021-06-13
For the matrix A below, find a nonzero vector in Nul A and a nonzero vector in Col A.
\(A=\begin{bmatrix}2&3&5&-9\\-8&-9&-11&21\\4&-3&-17&27\end{bmatrix}\)
Find a nonzero vector in Nul A.
\(A=\begin{bmatrix}-3\\2\\0\\1\end{bmatrix}\)
asked 2021-03-09
Perform the indicated matrix operations:
\(\begin{bmatrix}5 & 4 \\-3 & 7 \\ 0 & 1 \end{bmatrix}-\begin{bmatrix}-4 & 8 \\6 & 0 \\ -5 & 3 \end{bmatrix}\)
asked 2020-12-27
Perform the indicated matrix operations B - A given that A, B, and C are defined as follows. If an operation is not defined, state the reason.
\(A=\begin{bmatrix}4 & 0 \\-3 & 5 \\ 0 & 1 \end{bmatrix} B=\begin{bmatrix}5 & 1 \\-2 & -2 \end{bmatrix} C=\begin{bmatrix}1 & -1 \\-1 & 1 \end{bmatrix}\)
asked 2021-03-02
For Exercise , perform the indicated operations if possible.
\(A=\begin{bmatrix}4 & 1&-3 \\2 & 4 &6\end{bmatrix} , B=\begin{bmatrix}1 & 9 \\0 & -1\\3&5 \end{bmatrix} , C=\begin{bmatrix}0 & 1&-4 \\2 & -1 &8\end{bmatrix}\)
A+B=?
asked 2020-12-07

Let \(A=\begin{bmatrix}1 & 2 \\-1 & 1 \end{bmatrix} \text{ and } C=\begin{bmatrix}-1 & 1 \\2 & 1 \end{bmatrix}\)
a)Find elementary matrices \(E_1 \text{ and } E_2\) such that \(C=E_2E_1A\)
b)Show that is no elementary matrix E such that \(C=EA\)

asked 2020-12-16
Given matrix A and matrix B. Find (if possible) the matrices: (a) AB (b) BA. A=\begin{bmatrix}-1 \\-2\\-3 \end{bmatrix} , B=\begin{bmatrix}1 & 2 & 3 \end{bmatrix}
asked 2021-01-04
Matrix multiplication is pretty tough- so i will cover that in class. In the meantime , compute the following if
\(A=\begin{bmatrix}2&1&1 \\-1&-1&4 \end{bmatrix} , B=\begin{bmatrix}0 & 2 \\-4 & 1\\2&-3 \end{bmatrix} , C=\begin{bmatrix}6 & -1 \\3 & 0\\-2&5 \end{bmatrix} , D=\begin{bmatrix}2 & -3&4 \\-3& 1&-2 \end{bmatrix}\)
If the operation is not possible , write NOT POSSIBLE and be able to explain why
a)A+B
b)B+C
c)2A
...