# 11*sqrt48

Question
$$\displaystyle{11}\cdot\sqrt{{48}}$$

2021-01-09
$$\displaystyle{11}\cdot\sqrt{{48}}={11}\sqrt{{{16}\cdot{3}}}$$ Rewrite 48 as a product.
$$\displaystyle={11}\cdot\sqrt{{16}}\cdot\sqrt{{3}}$$ Use the rule $$\displaystyle\sqrt{{x}}{y}=\sqrt{{x}}\cdot\sqrt{{y}}$$
$$\displaystyle={11}\cdot{4}\cdot\sqrt{{3}}$$ Evaluate sqrt16=4
$$\displaystyle={44}\sqrt{{3}}$$ Multiply

### Relevant Questions

prove that $$1+tanhx /1-tanhx = e^2x$$
Evaluate the limit.
$$\lim_{x \rightarrow \infty} \frac{7(x^{9}-4x^{5}+2x-13}{-3x^{9}+x^{8}-5x^{2}+2x}$$
in number 7, Is the exponent of (-1) n right? I thought that the exponent of (-1) is n-1 because it changed from n=0 to n=1, and if $$(-1)^{n}$$, there will be a change of sign between negative sign and positive sign.
Evaluate the limit.
PSK\lim_{x \rightarrow \infty} \frac{7(x^{9}-4x^{5}+2x-13}{-3x^{9}+x^{8}-5x^{2}+2x} ZSK
$$\displaystyle{x}−{\left(\sqrt{{8}}{x}−{31}\right)}={5}$$
“For any elements @ and b from a group and any integer n, prove thal (a−1ba)n=a−1bna
The central processing unit (CPU) power in computers has increased significantly over the years. The CPU power in Macintosh computers has grown exponentially from 8 MHz in 1984 to 3400 MHz in 2013 (Source: Apple. The exponential function $$\displaystyle\{M}{\left({t}\right)}={7.91477}{\left({1.26698}\right)}^{{t}}{\left[{m}{a}{t}{h}\right]}$$, where t is the number of years after 1984, an be used to estimate the CPU power in a Macintosh computer in a given year. Find the CPU power of a Macintosh Performa 5320CD in 1995 and of an iMac G6 in 2009. Round to the nearest one MHz.
Simplify sqrt-54 using the imaginary number i
A) $$\displaystyle{3}{i}\sqrt{{6}}$$
B) $$\displaystyle-{3}\sqrt{{6}}$$
C) $$\displaystyle{i}\sqrt{{54}}$$
D) $$\displaystyle{3}\sqrt{-}{6}$$
$$\displaystyle{2}⋅{5}^{{x}}+{3}={6250}$$
If $$\displaystyle{s}≥{0}$$, then $$\displaystyle√{s}^{{2}}$$ is equal to
O A. 0
O B. 1
O c. −s
O D. s
...